AnimalTrack: A Benchmark for Multi-Animal Tracking in the Wild

水准点(测量) BitTorrent跟踪器 计算机科学 跟踪(教育) 人工智能 视频跟踪 帧(网络) 动物行为 机器学习 对象(语法) 计算机视觉 眼动 生物 地理 心理学 电信 教育学 动物 大地测量学
作者
Libo Zhang,Junyuan Gao,Xiao Zhang,Heng Fan
出处
期刊:International Journal of Computer Vision [Springer Nature]
卷期号:131 (2): 496-513 被引量:8
标识
DOI:10.1007/s11263-022-01711-8
摘要

Multi-animal tracking (MAT), a multi-object tracking (MOT) problem, is crucial for animal motion and behavior analysis and has many crucial applications such as biology, ecology and animal conservation. Despite its importance, MAT is largely under-explored compared to other MOT problems such as multi-human tracking due to the scarcity of dedicated benchmarks. To address this problem, we introduce AnimalTrack, a dedicated benchmark for multi-animal tracking in the wild. Specifically, AnimalTrack consists of 58 sequences from a diverse selection of 10 common animal categories. On average, each sequence comprises of 33 target objects for tracking. In order to ensure high quality, every frame in AnimalTrack is manually labeled with careful inspection and refinement. To our best knowledge, AnimalTrack is the first benchmark dedicated to multi-animal tracking. In addition, to understand how existing MOT algorithms perform on AnimalTrack and provide baselines for future comparison, we extensively evaluate 14 state-of-the-art representative trackers. The evaluation results demonstrate that, not surprisingly, most of these trackers become degenerated due to the differences between pedestrians and animals in various aspects (e.g., pose, motion, and appearance), and more efforts are desired to improve multi-animal tracking. We hope that AnimalTrack together with evaluation and analysis will foster further progress on multi-animal tracking. The dataset and evaluation as well as our analysis will be made available upon the acceptance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
4秒前
陈天爱学习完成签到,获得积分10
5秒前
lck发布了新的文献求助20
7秒前
刘YF发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
花花燕完成签到,获得积分10
10秒前
11秒前
hehe完成签到,获得积分10
12秒前
12秒前
ksak607155完成签到,获得积分10
12秒前
紫色奶萨发布了新的文献求助10
13秒前
16秒前
16秒前
17秒前
今后应助陈天爱学习采纳,获得10
17秒前
18秒前
21秒前
Tong发布了新的文献求助10
23秒前
27秒前
SciGPT应助刘YF采纳,获得80
29秒前
31秒前
陈运气完成签到 ,获得积分20
31秒前
34秒前
万能图书馆应助司空博涛采纳,获得10
37秒前
37秒前
8R60d8应助科研通管家采纳,获得10
38秒前
丘比特应助科研通管家采纳,获得30
38秒前
嗯哼应助科研通管家采纳,获得60
38秒前
8R60d8应助科研通管家采纳,获得10
38秒前
38秒前
8R60d8应助科研通管家采纳,获得10
38秒前
38秒前
领导范儿应助科研通管家采纳,获得10
38秒前
Akim应助科研通管家采纳,获得10
38秒前
8R60d8应助科研通管家采纳,获得10
39秒前
IBMffff应助科研通管家采纳,获得10
39秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161864
求助须知:如何正确求助?哪些是违规求助? 2813088
关于积分的说明 7898593
捐赠科研通 2472111
什么是DOI,文献DOI怎么找? 1316332
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129