Preoperative CECT-based Radiomic Signature for Predicting the Response of Transarterial Chemoembolization (TACE) Therapy in Hepatocellular Carcinoma

列线图 医学 无线电技术 肝细胞癌 逻辑回归 放射科 阶段(地层学) 实体瘤疗效评价标准 特征(语言学) 肿瘤科 临床试验 临床研究阶段 内科学 哲学 古生物学 生物 语言学
作者
Honglin Bai,Siyu Meng,Chuanfeng Xiong,Zhao Liu,Wei Shi,Qimeng Ren,Wei Xia,Xingyu Zhao,Junming Jian,Yizhi Song,Caifang Ni,Xin Gao,Zhi Li
出处
期刊:CardioVascular and Interventional Radiology [Springer Nature]
卷期号:45 (10): 1524-1533 被引量:13
标识
DOI:10.1007/s00270-022-03221-z
摘要

To evaluate the efficiency of radiomics signatures in predicting the response of transarterial chemoembolization (TACE) therapy based on preoperative contrast-enhanced computed tomography (CECT).This study consisted of 111 patients with intermediate-stage hepatocellular carcinoma who underwent CECT at both the arterial phase (AP) and venous phase (VP) before and after TACE. According to mRECIST 1.1, patients were divided into an objective-response group (n = 38) and a non-response group (n = 73). Among them, 79 patients were assigned as the training dataset, and the remaining 32 cases were assigned as the test dataset.Radiomics features were extracted from CECT images. Two feature ranking methods and three classifiers were used to find the best single-phase radiomics signatures for both AP and VP on the training set. Meanwhile, multi-phase radiomics signatures were built upon integration of images from two CECT phases by decision-level fusion and feature-level fusion. Finally, multivariable logistic regression was used to develop a nomogram by combining radiomics signatures and clinic-radiologic characteristics. The prediction performance was evaluated by AUC on the test dataset.The multi-phase radiomics signature (AUC = 0.883) performed better in predicting TACE therapy response compared to the best single-phase radiomics signature (AUC = 0.861). The nomogram (AUC = 0.913) showed better performance than any radiomics signatures.The radiomics signatures and nomogram were developed and validated for predicting responses to TACE therapy, and the radiomics model may play a positive role in identifying patients who may benefit from TACE therapy in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
David发布了新的文献求助10
2秒前
团团完成签到,获得积分10
2秒前
zwx发布了新的文献求助10
3秒前
怡然的寻桃关注了科研通微信公众号
4秒前
今天炒鱿鱼完成签到,获得积分20
4秒前
电池小能手完成签到,获得积分10
5秒前
Bubble_bei完成签到 ,获得积分10
6秒前
董恋风完成签到,获得积分10
7秒前
大模型应助一一采纳,获得10
8秒前
8秒前
9秒前
海鑫王完成签到,获得积分10
10秒前
mao关注了科研通微信公众号
10秒前
Attendre完成签到 ,获得积分10
10秒前
爆米花应助Faith采纳,获得10
11秒前
傲娇的月亮完成签到,获得积分10
11秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
田様应助慢慢采纳,获得10
12秒前
12秒前
劼大大完成签到,获得积分10
12秒前
执着的草丛完成签到,获得积分10
12秒前
12秒前
wanci应助zwx采纳,获得10
13秒前
zwx发布了新的文献求助20
13秒前
14秒前
Owen应助风趣的天奇采纳,获得10
15秒前
clear发布了新的文献求助10
16秒前
Tting发布了新的文献求助10
16秒前
wsd发布了新的文献求助10
16秒前
AhhHuang举报活力怜雪求助涉嫌违规
16秒前
sulin发布了新的文献求助10
16秒前
麦地娜发布了新的文献求助10
16秒前
兜兜风gf完成签到 ,获得积分10
17秒前
17秒前
可爱的函函应助张远最帅采纳,获得10
17秒前
沙库巴曲完成签到,获得积分10
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049