Machine learning-based prediction of emergency neurosurgery within 24 h after moderate to severe traumatic brain injury

医学 格拉斯哥昏迷指数 神经外科 创伤性脑损伤 逻辑回归 人口 急诊医学 创伤中心 回顾性队列研究 急诊科 内科学 外科 环境卫生 精神科
作者
Jean-Denis Moyer,Patrick Lee,Charles Bernard,Lois Henry,Elodie Lang,Fabrice Cook,Fanny Planquart,Mathieu Boutonnet,Anatole Harrois,Tobias Gauss,Paër-Sélim Abback,Gérard Audibert,Thomas Geeraerts,Olivier Langeron,Marc Léone,Julien Pottecher,Laurent Stecken,Jean‐Luc Hanouz
出处
期刊:World Journal of Emergency Surgery [Springer Nature]
卷期号:17 (1) 被引量:21
标识
DOI:10.1186/s13017-022-00449-5
摘要

Abstract Background Rapid referral of traumatic brain injury (TBI) patients requiring emergency neurosurgery to a specialized trauma center can significantly reduce morbidity and mortality. Currently, no model has been reported to predict the need for acute neurosurgery in severe to moderate TBI patients. This study aims to evaluate the performance of Machine Learning-based models to establish to predict the need for neurosurgery procedure within 24 h after moderate to severe TBI. Methods Retrospective multicenter cohort study using data from a national trauma registry (Traumabase®) from November 2011 to December 2020. Inclusion criteria correspond to patients over 18 years old with moderate or severe TBI (Glasgow coma score ≤ 12) during prehospital assessment. Patients who died within the first 24 h after hospital admission and secondary transfers were excluded. The population was divided into a train set (80% of patients) and a test set (20% of patients). Several approaches were used to define the best prognostic model (linear nearest neighbor or ensemble model). The Shapley Value was used to identify the most relevant pre-hospital variables for prediction. Results 2159 patients were included in the study. 914 patients (42%) required neurosurgical intervention within 24 h. The population was predominantly male (77%), young (median age 35 years [IQR 24–52]) with severe head injury (median GCS 6 [3–9]). Based on the evaluation of the predictive model on the test set, the logistic regression model had an AUC of 0.76. The best predictive model was obtained with the CatBoost technique (AUC 0.81). According to the Shapley values method, the most predictive variables in the CatBoost were a low initial Glasgow coma score, the regression of pupillary abnormality after osmotherapy, a high blood pressure and a low heart rate. Conclusion Machine learning-based models could predict the need for emergency neurosurgery within 24 h after moderate and severe head injury. Potential clinical benefits of such models as a decision-making tool deserve further assessment. The performance in real-life setting and the impact on clinical decision-making of the model requires workflow integration and prospective assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ASDq完成签到,获得积分10
1秒前
杨小鸿发布了新的文献求助10
2秒前
3秒前
longyuyan完成签到,获得积分10
4秒前
123发布了新的文献求助10
4秒前
感性的夜玉完成签到,获得积分10
4秒前
Sicily发布了新的文献求助10
5秒前
6秒前
6秒前
勇敢猫猫,不怕困难完成签到,获得积分20
8秒前
lu完成签到,获得积分10
8秒前
NexusExplorer应助YUMI采纳,获得10
8秒前
9秒前
卜念完成签到,获得积分10
9秒前
xutaiyu发布了新的文献求助10
9秒前
今后应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
危机的阁应助科研通管家采纳,获得30
10秒前
危机的阁应助科研通管家采纳,获得30
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
11秒前
风清扬应助科研通管家采纳,获得30
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
心想事成应助科研通管家采纳,获得10
11秒前
心想事成应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742261
求助须知:如何正确求助?哪些是违规求助? 5407364
关于积分的说明 15344547
捐赠科研通 4883713
什么是DOI,文献DOI怎么找? 2625203
邀请新用户注册赠送积分活动 1574062
关于科研通互助平台的介绍 1531044