Machine learning-based prediction of emergency neurosurgery within 24 h after moderate to severe traumatic brain injury

医学 格拉斯哥昏迷指数 神经外科 创伤性脑损伤 逻辑回归 人口 急诊医学 创伤中心 回顾性队列研究 急诊科 内科学 外科 环境卫生 精神科
作者
Jean-Denis Moyer,Patrick Lee,Charles Bernard,Lois Henry,Elodie Lang,Fabrice Cook,Fanny Planquart,Mathieu Boutonnet,Anatole Harrois,Tobias Gauss,Paër-Sélim Abback,Gérard Audibert,Thomas Geeraerts,Olivier Langeron,Marc Léone,Julien Pottecher,Laurent Stecken,Jean‐Luc Hanouz
出处
期刊:World Journal of Emergency Surgery [Springer Nature]
卷期号:17 (1) 被引量:10
标识
DOI:10.1186/s13017-022-00449-5
摘要

Rapid referral of traumatic brain injury (TBI) patients requiring emergency neurosurgery to a specialized trauma center can significantly reduce morbidity and mortality. Currently, no model has been reported to predict the need for acute neurosurgery in severe to moderate TBI patients. This study aims to evaluate the performance of Machine Learning-based models to establish to predict the need for neurosurgery procedure within 24 h after moderate to severe TBI.Retrospective multicenter cohort study using data from a national trauma registry (Traumabase®) from November 2011 to December 2020. Inclusion criteria correspond to patients over 18 years old with moderate or severe TBI (Glasgow coma score ≤ 12) during prehospital assessment. Patients who died within the first 24 h after hospital admission and secondary transfers were excluded. The population was divided into a train set (80% of patients) and a test set (20% of patients). Several approaches were used to define the best prognostic model (linear nearest neighbor or ensemble model). The Shapley Value was used to identify the most relevant pre-hospital variables for prediction.2159 patients were included in the study. 914 patients (42%) required neurosurgical intervention within 24 h. The population was predominantly male (77%), young (median age 35 years [IQR 24-52]) with severe head injury (median GCS 6 [3-9]). Based on the evaluation of the predictive model on the test set, the logistic regression model had an AUC of 0.76. The best predictive model was obtained with the CatBoost technique (AUC 0.81). According to the Shapley values method, the most predictive variables in the CatBoost were a low initial Glasgow coma score, the regression of pupillary abnormality after osmotherapy, a high blood pressure and a low heart rate.Machine learning-based models could predict the need for emergency neurosurgery within 24 h after moderate and severe head injury. Potential clinical benefits of such models as a decision-making tool deserve further assessment. The performance in real-life setting and the impact on clinical decision-making of the model requires workflow integration and prospective assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢的醉波完成签到,获得积分10
刚刚
1秒前
沉静豆芽完成签到,获得积分10
1秒前
可靠小凝完成签到 ,获得积分10
1秒前
YAMI完成签到,获得积分10
2秒前
zzz完成签到,获得积分10
6秒前
6秒前
7秒前
明理小凝完成签到 ,获得积分10
8秒前
whitekitten发布了新的文献求助10
9秒前
Dr.Lyo驳回了情怀应助
10秒前
lyn完成签到,获得积分10
10秒前
wwz应助迷路冰安采纳,获得10
11秒前
科研通AI2S应助西子阳采纳,获得10
11秒前
chenchenchen完成签到,获得积分10
12秒前
一一发布了新的文献求助10
12秒前
快乐应助负责之卉采纳,获得10
12秒前
科研通AI2S应助听话的刺猬采纳,获得10
13秒前
14秒前
wanci应助杭亦竹采纳,获得10
14秒前
15秒前
呵呵喊我完成签到,获得积分10
15秒前
谋勇兼备完成签到,获得积分10
16秒前
17秒前
17秒前
18秒前
18秒前
18秒前
Zh完成签到 ,获得积分20
18秒前
18秒前
fgh发布了新的文献求助10
18秒前
启航完成签到,获得积分10
19秒前
亚亚完成签到 ,获得积分10
19秒前
玄鸟纸鸢发布了新的文献求助10
20秒前
NexusExplorer应助aaronpancn采纳,获得10
20秒前
害羞的慕晴完成签到 ,获得积分10
20秒前
21秒前
21秒前
小皮皮完成签到,获得积分10
22秒前
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156090
求助须知:如何正确求助?哪些是违规求助? 2807496
关于积分的说明 7873356
捐赠科研通 2465814
什么是DOI,文献DOI怎么找? 1312446
科研通“疑难数据库(出版商)”最低求助积分说明 630107
版权声明 601905