Machine learning-based prediction of emergency neurosurgery within 24 h after moderate to severe traumatic brain injury

医学 格拉斯哥昏迷指数 神经外科 创伤性脑损伤 逻辑回归 人口 急诊医学 创伤中心 回顾性队列研究 急诊科 内科学 外科 环境卫生 精神科
作者
Jean-Denis Moyer,Patrick Lee,Charles Bernard,Lois Henry,Elodie Lang,Fabrice Cook,Fanny Planquart,Mathieu Boutonnet,Anatole Harrois,Tobias Gauss,Paër-Sélim Abback,Gérard Audibert,Thomas Geeraerts,Olivier Langeron,Marc Léone,Julien Pottecher,Laurent Stecken,Jean‐Luc Hanouz
出处
期刊:World Journal of Emergency Surgery [BioMed Central]
卷期号:17 (1) 被引量:21
标识
DOI:10.1186/s13017-022-00449-5
摘要

Abstract Background Rapid referral of traumatic brain injury (TBI) patients requiring emergency neurosurgery to a specialized trauma center can significantly reduce morbidity and mortality. Currently, no model has been reported to predict the need for acute neurosurgery in severe to moderate TBI patients. This study aims to evaluate the performance of Machine Learning-based models to establish to predict the need for neurosurgery procedure within 24 h after moderate to severe TBI. Methods Retrospective multicenter cohort study using data from a national trauma registry (Traumabase®) from November 2011 to December 2020. Inclusion criteria correspond to patients over 18 years old with moderate or severe TBI (Glasgow coma score ≤ 12) during prehospital assessment. Patients who died within the first 24 h after hospital admission and secondary transfers were excluded. The population was divided into a train set (80% of patients) and a test set (20% of patients). Several approaches were used to define the best prognostic model (linear nearest neighbor or ensemble model). The Shapley Value was used to identify the most relevant pre-hospital variables for prediction. Results 2159 patients were included in the study. 914 patients (42%) required neurosurgical intervention within 24 h. The population was predominantly male (77%), young (median age 35 years [IQR 24–52]) with severe head injury (median GCS 6 [3–9]). Based on the evaluation of the predictive model on the test set, the logistic regression model had an AUC of 0.76. The best predictive model was obtained with the CatBoost technique (AUC 0.81). According to the Shapley values method, the most predictive variables in the CatBoost were a low initial Glasgow coma score, the regression of pupillary abnormality after osmotherapy, a high blood pressure and a low heart rate. Conclusion Machine learning-based models could predict the need for emergency neurosurgery within 24 h after moderate and severe head injury. Potential clinical benefits of such models as a decision-making tool deserve further assessment. The performance in real-life setting and the impact on clinical decision-making of the model requires workflow integration and prospective assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
火星上小土豆完成签到 ,获得积分10
1秒前
爱撒娇的孤丹完成签到 ,获得积分10
3秒前
xc完成签到,获得积分10
3秒前
CHANG完成签到 ,获得积分10
5秒前
陈海明发布了新的文献求助10
5秒前
pep完成签到 ,获得积分10
12秒前
科研小哥完成签到,获得积分10
13秒前
小谭完成签到 ,获得积分10
14秒前
连难胜完成签到 ,获得积分10
16秒前
友好语风完成签到,获得积分10
20秒前
陈海明完成签到,获得积分10
23秒前
ikun0000完成签到,获得积分10
35秒前
她的城完成签到,获得积分0
36秒前
40秒前
ding应助烂漫的汲采纳,获得10
42秒前
胡杨发布了新的文献求助10
44秒前
Wmhan完成签到 ,获得积分10
45秒前
寇婧怡完成签到 ,获得积分10
45秒前
股价发布了新的文献求助10
47秒前
糊涂涂完成签到 ,获得积分10
48秒前
烂漫的汲完成签到,获得积分10
48秒前
49秒前
包子牛奶完成签到,获得积分10
56秒前
我啊完成签到 ,获得积分10
57秒前
爆米花应助科研通管家采纳,获得10
57秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
深情安青应助股价采纳,获得10
57秒前
脑洞疼应助科研通管家采纳,获得10
57秒前
orixero应助科研通管家采纳,获得10
57秒前
Jason-1024完成签到,获得积分10
57秒前
北国雪未消完成签到 ,获得积分10
1分钟前
1分钟前
研友_VZGVzn完成签到,获得积分10
1分钟前
如意枫叶发布了新的文献求助10
1分钟前
yuntong完成签到 ,获得积分0
1分钟前
科研通AI2S应助heli采纳,获得10
1分钟前
米博士完成签到,获得积分10
1分钟前
英姑应助如意枫叶采纳,获得10
1分钟前
花花糖果完成签到 ,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965769
求助须知:如何正确求助?哪些是违规求助? 3510991
关于积分的说明 11155985
捐赠科研通 3245486
什么是DOI,文献DOI怎么找? 1793074
邀请新用户注册赠送积分活动 874215
科研通“疑难数据库(出版商)”最低求助积分说明 804255