Machine learning-based prediction of emergency neurosurgery within 24 h after moderate to severe traumatic brain injury

医学 格拉斯哥昏迷指数 神经外科 创伤性脑损伤 逻辑回归 人口 急诊医学 创伤中心 回顾性队列研究 急诊科 内科学 外科 环境卫生 精神科
作者
Jean-Denis Moyer,Patrick Lee,Charles Bernard,Lois Henry,Elodie Lang,Fabrice Cook,Fanny Planquart,Mathieu Boutonnet,Anatole Harrois,Tobias Gauss,Paër-Sélim Abback,Gérard Audibert,Thomas Geeraerts,Olivier Langeron,Marc Léone,Julien Pottecher,Laurent Stecken,Jean‐Luc Hanouz
出处
期刊:World Journal of Emergency Surgery [BioMed Central]
卷期号:17 (1) 被引量:21
标识
DOI:10.1186/s13017-022-00449-5
摘要

Abstract Background Rapid referral of traumatic brain injury (TBI) patients requiring emergency neurosurgery to a specialized trauma center can significantly reduce morbidity and mortality. Currently, no model has been reported to predict the need for acute neurosurgery in severe to moderate TBI patients. This study aims to evaluate the performance of Machine Learning-based models to establish to predict the need for neurosurgery procedure within 24 h after moderate to severe TBI. Methods Retrospective multicenter cohort study using data from a national trauma registry (Traumabase®) from November 2011 to December 2020. Inclusion criteria correspond to patients over 18 years old with moderate or severe TBI (Glasgow coma score ≤ 12) during prehospital assessment. Patients who died within the first 24 h after hospital admission and secondary transfers were excluded. The population was divided into a train set (80% of patients) and a test set (20% of patients). Several approaches were used to define the best prognostic model (linear nearest neighbor or ensemble model). The Shapley Value was used to identify the most relevant pre-hospital variables for prediction. Results 2159 patients were included in the study. 914 patients (42%) required neurosurgical intervention within 24 h. The population was predominantly male (77%), young (median age 35 years [IQR 24–52]) with severe head injury (median GCS 6 [3–9]). Based on the evaluation of the predictive model on the test set, the logistic regression model had an AUC of 0.76. The best predictive model was obtained with the CatBoost technique (AUC 0.81). According to the Shapley values method, the most predictive variables in the CatBoost were a low initial Glasgow coma score, the regression of pupillary abnormality after osmotherapy, a high blood pressure and a low heart rate. Conclusion Machine learning-based models could predict the need for emergency neurosurgery within 24 h after moderate and severe head injury. Potential clinical benefits of such models as a decision-making tool deserve further assessment. The performance in real-life setting and the impact on clinical decision-making of the model requires workflow integration and prospective assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
fwx完成签到,获得积分20
1秒前
吕嫣娆发布了新的文献求助30
2秒前
狂野元枫发布了新的文献求助200
3秒前
3秒前
刘小小123发布了新的文献求助10
3秒前
3秒前
小黑哥完成签到,获得积分20
3秒前
Jasper应助风趣的黑夜采纳,获得10
4秒前
JOE68发布了新的文献求助10
4秒前
huahero2025应助morena采纳,获得10
4秒前
kingwill应助神勇语柳采纳,获得20
5秒前
充电宝应助t通采纳,获得10
5秒前
5秒前
Jasper应助金木研采纳,获得10
6秒前
6秒前
白芷烟发布了新的文献求助10
6秒前
我是谁完成签到,获得积分20
6秒前
鱼日发布了新的文献求助10
8秒前
hiauin完成签到 ,获得积分10
8秒前
Chris学长完成签到,获得积分10
8秒前
9秒前
米粒发布了新的文献求助10
9秒前
10秒前
无限达完成签到,获得积分10
10秒前
Owen应助sci一点就通采纳,获得10
10秒前
11秒前
11秒前
善学以致用应助龙行天下采纳,获得10
11秒前
Zyk发布了新的文献求助10
12秒前
畅快的安白完成签到,获得积分10
13秒前
飘逸的飞丹完成签到 ,获得积分10
13秒前
c138zyx发布了新的文献求助10
14秒前
现代小蚂蚁关注了科研通微信公众号
14秒前
JamesPei应助水三寿采纳,获得10
14秒前
彳亍完成签到,获得积分10
14秒前
15秒前
白芷烟完成签到,获得积分10
15秒前
15秒前
小蘑菇应助fwx采纳,获得10
16秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3749356
求助须知:如何正确求助?哪些是违规求助? 3292560
关于积分的说明 10077033
捐赠科研通 3007979
什么是DOI,文献DOI怎么找? 1651945
邀请新用户注册赠送积分活动 786910
科研通“疑难数据库(出版商)”最低求助积分说明 751906