Machine learning-based prediction of emergency neurosurgery within 24 h after moderate to severe traumatic brain injury

医学 格拉斯哥昏迷指数 神经外科 创伤性脑损伤 逻辑回归 人口 急诊医学 创伤中心 回顾性队列研究 急诊科 内科学 外科 环境卫生 精神科
作者
Jean-Denis Moyer,Patrick Lee,Charles Bernard,Lois Henry,Elodie Lang,Fabrice Cook,Fanny Planquart,Mathieu Boutonnet,Anatole Harrois,Tobias Gauss,Paër-Sélim Abback,Gérard Audibert,Thomas Geeraerts,Olivier Langeron,Marc Léone,Julien Pottecher,Laurent Stecken,Jean‐Luc Hanouz
出处
期刊:World Journal of Emergency Surgery [Springer Nature]
卷期号:17 (1) 被引量:21
标识
DOI:10.1186/s13017-022-00449-5
摘要

Abstract Background Rapid referral of traumatic brain injury (TBI) patients requiring emergency neurosurgery to a specialized trauma center can significantly reduce morbidity and mortality. Currently, no model has been reported to predict the need for acute neurosurgery in severe to moderate TBI patients. This study aims to evaluate the performance of Machine Learning-based models to establish to predict the need for neurosurgery procedure within 24 h after moderate to severe TBI. Methods Retrospective multicenter cohort study using data from a national trauma registry (Traumabase®) from November 2011 to December 2020. Inclusion criteria correspond to patients over 18 years old with moderate or severe TBI (Glasgow coma score ≤ 12) during prehospital assessment. Patients who died within the first 24 h after hospital admission and secondary transfers were excluded. The population was divided into a train set (80% of patients) and a test set (20% of patients). Several approaches were used to define the best prognostic model (linear nearest neighbor or ensemble model). The Shapley Value was used to identify the most relevant pre-hospital variables for prediction. Results 2159 patients were included in the study. 914 patients (42%) required neurosurgical intervention within 24 h. The population was predominantly male (77%), young (median age 35 years [IQR 24–52]) with severe head injury (median GCS 6 [3–9]). Based on the evaluation of the predictive model on the test set, the logistic regression model had an AUC of 0.76. The best predictive model was obtained with the CatBoost technique (AUC 0.81). According to the Shapley values method, the most predictive variables in the CatBoost were a low initial Glasgow coma score, the regression of pupillary abnormality after osmotherapy, a high blood pressure and a low heart rate. Conclusion Machine learning-based models could predict the need for emergency neurosurgery within 24 h after moderate and severe head injury. Potential clinical benefits of such models as a decision-making tool deserve further assessment. The performance in real-life setting and the impact on clinical decision-making of the model requires workflow integration and prospective assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶95完成签到 ,获得积分10
刚刚
独特纸飞机完成签到 ,获得积分10
刚刚
顺心的书包完成签到,获得积分10
1秒前
寒冰完成签到,获得积分10
1秒前
李彪发布了新的文献求助10
2秒前
GOD伟完成签到,获得积分0
2秒前
量子星尘发布了新的文献求助10
3秒前
长孙烙完成签到 ,获得积分10
3秒前
热心的灵凡应助烈阳初现采纳,获得10
4秒前
无宇伦比完成签到,获得积分10
4秒前
啵啵奶冻完成签到 ,获得积分10
5秒前
拼搏的青雪完成签到 ,获得积分10
5秒前
大模型应助Cassie采纳,获得10
5秒前
misa完成签到 ,获得积分10
6秒前
6秒前
公西翠萱完成签到,获得积分10
7秒前
WangXinkui完成签到,获得积分10
7秒前
7秒前
FlyingAxe完成签到,获得积分10
8秒前
9秒前
妮妮完成签到,获得积分10
9秒前
meimale完成签到,获得积分10
9秒前
10秒前
Coolkid2001完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
magic7完成签到,获得积分10
10秒前
无辜的蜻蜓完成签到 ,获得积分10
11秒前
毛哥看文献完成签到 ,获得积分10
11秒前
大块完成签到 ,获得积分10
11秒前
11秒前
无悔呀完成签到,获得积分10
12秒前
哈哈完成签到,获得积分10
12秒前
等风来完成签到 ,获得积分10
13秒前
胖达发布了新的文献求助10
14秒前
14秒前
正经大善人完成签到,获得积分10
14秒前
温婉的香氛完成签到 ,获得积分10
14秒前
ayan发布了新的文献求助10
15秒前
琴因完成签到,获得积分10
15秒前
健忘蓝血完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664825
求助须知:如何正确求助?哪些是违规求助? 4870916
关于积分的说明 15108980
捐赠科研通 4823643
什么是DOI,文献DOI怎么找? 2582450
邀请新用户注册赠送积分活动 1536469
关于科研通互助平台的介绍 1495006