Robust Registration Algorithm for Optical and SAR Images Based on Adjacent Self-Similarity Feature

人工智能 合成孔径雷达 计算机科学 直方图 斑点图案 稳健性(进化) 模式识别(心理学) 图像配准 特征(语言学) 计算机视觉 特征提取 像素 算法 图像(数学) 生物化学 基因 哲学 语言学 化学
作者
Xin Xiong,Guowang Jin,Qing Xu,Hongmin Zhang,Limei Wang,Ke Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-17 被引量:22
标识
DOI:10.1109/tgrs.2022.3197357
摘要

Because optical and synthetic aperture radar (SAR) images are complementary, their registration has received extensive attention in joint applications. However, robust optical and SAR image registration is challenging due to substantial geometric and radiometric differences. To address this problem, we propose a fast and robust registration algorithm for optical and SAR images based on a novel feature type known as the adjacent self-similarity (ASS). The ASS feature of the pixelwise feature representation is defined to quickly and finely capture the structural features of the image. The ASS feature is extracted by using an optimized offset mean filtering method in a neighborhood of the unit pixel radius to accelerate and refine calculations and the local statistics weighted difference operation to suppress coherent speckles. Based on the ASS feature, we extract the minimum self-similarity map (SSM) and the index map, which are robust against radiometric differences and speckles. Then, based on the excellent characteristics of the two maps, we propose a feature detector based on suppressing the local nonmaximum on the minimum SSM and a novel feature descriptor based on calculating the distribution histogram of the index map in a log-polar grid. In addition, we design a rotation invariance enhancement method for the descriptor to improve the rotation invariance robustness of the algorithm. We conduct experiments with both synthetic and real image pairs. The registration results demonstrate that the proposed algorithm has good scale and rotation invariance, as well as good antinoise ability, and that the algorithm performs better than existing state-of-the-art algorithms in terms of registration robustness, accuracy, and efficiency. The registration results on two real optical and SAR image pairs with complex image scenes show the adaptability of the proposed algorithm. The source code of ASS is publicly available1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田宇22333发布了新的文献求助10
刚刚
善学以致用应助辉尝不错采纳,获得10
刚刚
打打应助zhangmy1采纳,获得10
刚刚
1秒前
2秒前
嘟嘟图图发布了新的文献求助10
2秒前
双吉芝士堡完成签到,获得积分20
2秒前
宣秋烟完成签到,获得积分10
2秒前
虚幻的小刺猬完成签到,获得积分10
3秒前
香蕉觅云应助psclib采纳,获得10
3秒前
4秒前
球状闪电完成签到,获得积分10
5秒前
科研通AI6应助zxf采纳,获得10
6秒前
浮游应助zxf采纳,获得10
6秒前
6秒前
姚友进完成签到,获得积分10
8秒前
深情安青应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得30
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
9秒前
文静应助科研通管家采纳,获得10
9秒前
star应助科研通管家采纳,获得150
10秒前
从容栾完成签到,获得积分20
10秒前
田様应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
天天快乐应助蓓蓓0303采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
star应助科研通管家采纳,获得100
10秒前
情怀应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289499
求助须知:如何正确求助?哪些是违规求助? 4441106
关于积分的说明 13826460
捐赠科研通 4323436
什么是DOI,文献DOI怎么找? 2373207
邀请新用户注册赠送积分活动 1368606
关于科研通互助平台的介绍 1332493