Cross Modality Knowledge Distillation Between A-Mode Ultrasound and Surface Electromyography

模态(人机交互) 模式 计算机科学 人工智能 手势 肌电图 人工神经网络 模式识别(心理学) 机器学习 语音识别 心理学 社会科学 精神科 社会学
作者
Jia Zeng,Yixuan Sheng,Yicheng Yang,Ziliang Zhou,Honghai Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-9 被引量:12
标识
DOI:10.1109/tim.2022.3195264
摘要

Surface electromyography (sEMG) and A-mode ultrasound (AUS) are two widely employed sensing modalities to detect muscle activities. By comparison, AUS modality shows the characteristics of higher decoding accuracy than sEMG modality. However, AUS is far less reliable than sEMG in actual long-term use. To resolve this contradiction, we considered leveraging AUS as a teacher to supervise sEMG training better and learning an augmented sEMG representation. Firstly, a novel network architecture MINDS (MultI-branch Network with Diverse focuS) was proposed for gesture recognition, which was suitable for both sEMG and AUS modalities. Secondly, a cross modality knowledge distillation (CMKD) framework was proposed, to transfer the latent knowledge of AUS to sEMG through Kullback-Leibler divergence loss. The gesture recognition accuracies were compared between MINDS and the existing networks. The experimental results demonstrated that MINDS outperforms other networks under both sEMG and AUS modalities. Furthermore, the feasibility of the CMKD framework was evaluated on the proposed MINDS and other existing networks. The results revealed that with knowledge distillation from AUS, the accuracy of the sEMG modality obtained a significant improvement, regardless of the employed network architecture. This work confirms the superiority of the proposed MINDS network and the feasibility of the proposed CMKD framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
萧水白应助dai采纳,获得10
5秒前
aaaa发布了新的文献求助10
7秒前
竹音完成签到,获得积分10
8秒前
子伯完成签到,获得积分10
8秒前
自信的昊焱完成签到,获得积分10
11秒前
今后应助四季夏目采纳,获得10
12秒前
阿槿发布了新的文献求助10
14秒前
善学以致用应助idynamics采纳,获得10
15秒前
15秒前
18秒前
20秒前
捷克发布了新的文献求助10
21秒前
七叶树完成签到,获得积分10
21秒前
小彤完成签到 ,获得积分10
23秒前
Orange应助小黑采纳,获得10
24秒前
清爽擎汉完成签到,获得积分20
24秒前
猪猪hero发布了新的文献求助10
24秒前
默listening发布了新的文献求助10
25秒前
28秒前
liberation完成签到 ,获得积分0
28秒前
领导范儿应助Roussinsalt采纳,获得10
29秒前
万能图书馆应助阿槿采纳,获得10
30秒前
31秒前
SYLH应助祥子的骆驼采纳,获得10
32秒前
32秒前
清爽擎汉关注了科研通微信公众号
35秒前
小黑发布了新的文献求助10
35秒前
研友_VZG7GZ应助小火苗采纳,获得10
36秒前
默listening完成签到,获得积分10
36秒前
36秒前
卡奇Mikey完成签到,获得积分10
37秒前
眠眠清完成签到 ,获得积分10
38秒前
38秒前
李健应助lotus采纳,获得30
38秒前
38秒前
感性的夜玉完成签到,获得积分10
39秒前
balmy完成签到 ,获得积分10
40秒前
阿槿完成签到,获得积分20
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966147
求助须知:如何正确求助?哪些是违规求助? 3511532
关于积分的说明 11158765
捐赠科研通 3246148
什么是DOI,文献DOI怎么找? 1793309
邀请新用户注册赠送积分活动 874295
科研通“疑难数据库(出版商)”最低求助积分说明 804343