Cross Modality Knowledge Distillation Between A-Mode Ultrasound and Surface Electromyography

模态(人机交互) 模式 计算机科学 人工智能 手势 肌电图 人工神经网络 模式识别(心理学) 机器学习 语音识别 心理学 社会科学 精神科 社会学
作者
Jia Zeng,Yixuan Sheng,Yicheng Yang,Ziliang Zhou,Honghai Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-9 被引量:11
标识
DOI:10.1109/tim.2022.3195264
摘要

Surface electromyography (sEMG) and A-mode ultrasound (AUS) are two widely employed sensing modalities to detect muscle activities. By comparison, AUS modality shows the characteristics of higher decoding accuracy than sEMG modality. However, AUS is far less reliable than sEMG in actual long-term use. To resolve this contradiction, we considered leveraging AUS as a teacher to supervise sEMG training better and learning an augmented sEMG representation. Firstly, a novel network architecture MINDS (MultI-branch Network with Diverse focuS) was proposed for gesture recognition, which was suitable for both sEMG and AUS modalities. Secondly, a cross modality knowledge distillation (CMKD) framework was proposed, to transfer the latent knowledge of AUS to sEMG through Kullback-Leibler divergence loss. The gesture recognition accuracies were compared between MINDS and the existing networks. The experimental results demonstrated that MINDS outperforms other networks under both sEMG and AUS modalities. Furthermore, the feasibility of the CMKD framework was evaluated on the proposed MINDS and other existing networks. The results revealed that with knowledge distillation from AUS, the accuracy of the sEMG modality obtained a significant improvement, regardless of the employed network architecture. This work confirms the superiority of the proposed MINDS network and the feasibility of the proposed CMKD framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐徐图之发布了新的文献求助10
刚刚
刚刚
劲秉应助风过大泽采纳,获得30
2秒前
殷勤的樱桃完成签到 ,获得积分10
3秒前
wei发布了新的文献求助10
3秒前
3秒前
4秒前
欲静完成签到,获得积分10
4秒前
LexMz发布了新的文献求助10
4秒前
可爱火发布了新的文献求助10
5秒前
5秒前
yoyocici1505完成签到,获得积分10
5秒前
QR发布了新的文献求助10
7秒前
LaFee完成签到,获得积分10
7秒前
牟宸锐发布了新的文献求助30
8秒前
8秒前
8秒前
科目三应助patrick采纳,获得30
9秒前
9秒前
9秒前
务实的焦发布了新的文献求助10
10秒前
12秒前
CipherSage应助wzyyyyy采纳,获得10
13秒前
14秒前
14秒前
漾漾发布了新的文献求助10
14秒前
在望发布了新的文献求助10
14秒前
英俊的铭应助调皮的易巧采纳,获得10
14秒前
14秒前
14秒前
wei完成签到,获得积分10
14秒前
dyfsj发布了新的文献求助30
15秒前
16秒前
16秒前
大壮应助hanchangcun采纳,获得10
16秒前
wuyue完成签到,获得积分10
16秒前
隐形曼青应助懒羊羊采纳,获得20
18秒前
19秒前
开心的芒果完成签到,获得积分10
19秒前
狂飙的蛋发布了新的文献求助20
19秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3263951
求助须知:如何正确求助?哪些是违规求助? 2904227
关于积分的说明 8328755
捐赠科研通 2574315
什么是DOI,文献DOI怎么找? 1399020
科研通“疑难数据库(出版商)”最低求助积分说明 654403
邀请新用户注册赠送积分活动 633020