Cross Modality Knowledge Distillation Between A-Mode Ultrasound and Surface Electromyography

模态(人机交互) 模式 计算机科学 人工智能 手势 肌电图 人工神经网络 模式识别(心理学) 机器学习 语音识别 心理学 社会科学 精神科 社会学
作者
Jia Zeng,Yixuan Sheng,Yicheng Yang,Ziliang Zhou,Honghai Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-9 被引量:12
标识
DOI:10.1109/tim.2022.3195264
摘要

Surface electromyography (sEMG) and A-mode ultrasound (AUS) are two widely employed sensing modalities to detect muscle activities. By comparison, AUS modality shows the characteristics of higher decoding accuracy than sEMG modality. However, AUS is far less reliable than sEMG in actual long-term use. To resolve this contradiction, we considered leveraging AUS as a teacher to supervise sEMG training better and learning an augmented sEMG representation. Firstly, a novel network architecture MINDS (MultI-branch Network with Diverse focuS) was proposed for gesture recognition, which was suitable for both sEMG and AUS modalities. Secondly, a cross modality knowledge distillation (CMKD) framework was proposed, to transfer the latent knowledge of AUS to sEMG through Kullback-Leibler divergence loss. The gesture recognition accuracies were compared between MINDS and the existing networks. The experimental results demonstrated that MINDS outperforms other networks under both sEMG and AUS modalities. Furthermore, the feasibility of the CMKD framework was evaluated on the proposed MINDS and other existing networks. The results revealed that with knowledge distillation from AUS, the accuracy of the sEMG modality obtained a significant improvement, regardless of the employed network architecture. This work confirms the superiority of the proposed MINDS network and the feasibility of the proposed CMKD framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
喻槿完成签到,获得积分10
7秒前
qiao发布了新的文献求助10
7秒前
英俊的铭应助喻槿采纳,获得10
12秒前
隐形曼青应助lcr采纳,获得10
13秒前
14秒前
16秒前
16秒前
16秒前
17秒前
17秒前
17秒前
17秒前
17秒前
17秒前
17秒前
在水一方应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
18秒前
kiki完成签到,获得积分10
19秒前
魏头头发布了新的文献求助10
20秒前
辣目童子完成签到 ,获得积分10
23秒前
24秒前
Lucycomplex完成签到,获得积分10
26秒前
程昱发布了新的文献求助10
31秒前
韦雪莲完成签到 ,获得积分10
34秒前
魏头头完成签到 ,获得积分10
34秒前
katata完成签到 ,获得积分10
36秒前
小新完成签到 ,获得积分10
48秒前
传奇3应助xdc采纳,获得10
49秒前
务实笑柳完成签到 ,获得积分10
53秒前
孙嘉畯完成签到 ,获得积分10
58秒前
1分钟前
如意的冰双完成签到 ,获得积分10
1分钟前
陈彦彬发布了新的文献求助10
1分钟前
酷波er应助冬里一把火采纳,获得10
1分钟前
sanki关注了科研通微信公众号
1分钟前
1分钟前
lcr发布了新的文献求助10
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5852126
求助须知:如何正确求助?哪些是违规求助? 6276113
关于积分的说明 15627658
捐赠科研通 4968034
什么是DOI,文献DOI怎么找? 2678871
邀请新用户注册赠送积分活动 1623127
关于科研通互助平台的介绍 1579506