Cross Modality Knowledge Distillation Between A-Mode Ultrasound and Surface Electromyography

模态(人机交互) 模式 计算机科学 人工智能 手势 肌电图 人工神经网络 模式识别(心理学) 机器学习 语音识别 心理学 社会科学 精神科 社会学
作者
Jia Zeng,Yixuan Sheng,Yicheng Yang,Ziliang Zhou,Honghai Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-9 被引量:12
标识
DOI:10.1109/tim.2022.3195264
摘要

Surface electromyography (sEMG) and A-mode ultrasound (AUS) are two widely employed sensing modalities to detect muscle activities. By comparison, AUS modality shows the characteristics of higher decoding accuracy than sEMG modality. However, AUS is far less reliable than sEMG in actual long-term use. To resolve this contradiction, we considered leveraging AUS as a teacher to supervise sEMG training better and learning an augmented sEMG representation. Firstly, a novel network architecture MINDS (MultI-branch Network with Diverse focuS) was proposed for gesture recognition, which was suitable for both sEMG and AUS modalities. Secondly, a cross modality knowledge distillation (CMKD) framework was proposed, to transfer the latent knowledge of AUS to sEMG through Kullback-Leibler divergence loss. The gesture recognition accuracies were compared between MINDS and the existing networks. The experimental results demonstrated that MINDS outperforms other networks under both sEMG and AUS modalities. Furthermore, the feasibility of the CMKD framework was evaluated on the proposed MINDS and other existing networks. The results revealed that with knowledge distillation from AUS, the accuracy of the sEMG modality obtained a significant improvement, regardless of the employed network architecture. This work confirms the superiority of the proposed MINDS network and the feasibility of the proposed CMKD framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈笨笨完成签到,获得积分10
1秒前
动听平露完成签到,获得积分10
1秒前
深情安青应助Faust采纳,获得10
1秒前
张张张完成签到,获得积分20
1秒前
Smiles完成签到,获得积分10
2秒前
3秒前
土豆土豆发布了新的文献求助10
3秒前
哭泣藏花完成签到 ,获得积分10
3秒前
zcy发布了新的文献求助10
3秒前
Jasper应助Allen采纳,获得10
8秒前
1335804518完成签到 ,获得积分10
10秒前
徐开心完成签到,获得积分10
12秒前
9952完成签到,获得积分10
13秒前
学术蛔虫完成签到 ,获得积分10
14秒前
CodeCraft应助Lionnn采纳,获得10
19秒前
zcy发布了新的文献求助10
20秒前
11关注了科研通微信公众号
20秒前
图图完成签到 ,获得积分10
21秒前
23秒前
24秒前
24秒前
万莎莎完成签到 ,获得积分10
24秒前
CipherSage应助欣欣采纳,获得10
24秒前
26秒前
26秒前
26秒前
fd163c应助科研通管家采纳,获得10
27秒前
27秒前
顾矜应助科研通管家采纳,获得10
27秒前
27秒前
genomed应助科研通管家采纳,获得10
27秒前
坚守初心发布了新的文献求助10
27秒前
典雅问寒应助科研通管家采纳,获得10
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
pluto应助科研通管家采纳,获得20
28秒前
JamesPei应助科研通管家采纳,获得10
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
genomed应助科研通管家采纳,获得10
28秒前
852应助练习者采纳,获得10
28秒前
zcy完成签到,获得积分20
29秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736398
求助须知:如何正确求助?哪些是违规求助? 3280208
关于积分的说明 10019221
捐赠科研通 2996907
什么是DOI,文献DOI怎么找? 1644321
邀请新用户注册赠送积分活动 781918
科研通“疑难数据库(出版商)”最低求助积分说明 749626