亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cross Modality Knowledge Distillation Between A-Mode Ultrasound and Surface Electromyography

模态(人机交互) 模式 计算机科学 人工智能 手势 肌电图 人工神经网络 模式识别(心理学) 机器学习 语音识别 心理学 社会科学 精神科 社会学
作者
Jia Zeng,Yixuan Sheng,Yicheng Yang,Ziliang Zhou,Honghai Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-9 被引量:12
标识
DOI:10.1109/tim.2022.3195264
摘要

Surface electromyography (sEMG) and A-mode ultrasound (AUS) are two widely employed sensing modalities to detect muscle activities. By comparison, AUS modality shows the characteristics of higher decoding accuracy than sEMG modality. However, AUS is far less reliable than sEMG in actual long-term use. To resolve this contradiction, we considered leveraging AUS as a teacher to supervise sEMG training better and learning an augmented sEMG representation. Firstly, a novel network architecture MINDS (MultI-branch Network with Diverse focuS) was proposed for gesture recognition, which was suitable for both sEMG and AUS modalities. Secondly, a cross modality knowledge distillation (CMKD) framework was proposed, to transfer the latent knowledge of AUS to sEMG through Kullback-Leibler divergence loss. The gesture recognition accuracies were compared between MINDS and the existing networks. The experimental results demonstrated that MINDS outperforms other networks under both sEMG and AUS modalities. Furthermore, the feasibility of the CMKD framework was evaluated on the proposed MINDS and other existing networks. The results revealed that with knowledge distillation from AUS, the accuracy of the sEMG modality obtained a significant improvement, regardless of the employed network architecture. This work confirms the superiority of the proposed MINDS network and the feasibility of the proposed CMKD framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魔幻的芳完成签到,获得积分10
3秒前
4秒前
火星上的宝马完成签到,获得积分10
6秒前
隔壁老王发布了新的文献求助10
9秒前
悲凉的忆南完成签到,获得积分10
10秒前
陈旧完成签到,获得积分10
13秒前
欣欣子完成签到,获得积分10
16秒前
18秒前
sunstar完成签到,获得积分10
19秒前
雾里发布了新的文献求助10
22秒前
yxl完成签到,获得积分10
23秒前
24秒前
可耐的盈完成签到,获得积分10
26秒前
绿毛水怪完成签到,获得积分10
29秒前
29秒前
lsc完成签到,获得积分10
32秒前
33秒前
小fei完成签到,获得积分10
35秒前
万能图书馆应助雾里采纳,获得10
36秒前
wq发布了新的文献求助10
37秒前
麻辣薯条完成签到,获得积分10
39秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
bkagyin应助科研通管家采纳,获得10
39秒前
Criminology34应助科研通管家采纳,获得10
39秒前
Criminology34应助科研通管家采纳,获得10
39秒前
Criminology34应助科研通管家采纳,获得10
39秒前
时尚身影完成签到,获得积分10
42秒前
CR7应助Yini采纳,获得20
43秒前
流苏2完成签到,获得积分10
46秒前
Lucas应助买三个包子吧采纳,获得10
1分钟前
wq发布了新的文献求助10
1分钟前
在水一方应助wq采纳,获得10
1分钟前
BTW完成签到,获得积分10
1分钟前
甜橙完成签到 ,获得积分10
1分钟前
1分钟前
年少完成签到 ,获得积分10
1分钟前
科目三应助可靠的寒风采纳,获得10
1分钟前
胖胖的江鸟完成签到 ,获得积分10
1分钟前
黄淳完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664241
求助须知:如何正确求助?哪些是违规求助? 4859506
关于积分的说明 15107358
捐赠科研通 4822753
什么是DOI,文献DOI怎么找? 2581699
邀请新用户注册赠送积分活动 1535922
关于科研通互助平台的介绍 1494120