模态(人机交互)
模式
计算机科学
人工智能
手势
肌电图
人工神经网络
模式识别(心理学)
机器学习
语音识别
心理学
社会科学
精神科
社会学
作者
Jia Zeng,Yixuan Sheng,Yicheng Yang,Ziliang Zhou,Honghai Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement
[Institute of Electrical and Electronics Engineers]
日期:2022-01-01
卷期号:71: 1-9
被引量:11
标识
DOI:10.1109/tim.2022.3195264
摘要
Surface electromyography (sEMG) and A-mode ultrasound (AUS) are two widely employed sensing modalities to detect muscle activities. By comparison, AUS modality shows the characteristics of higher decoding accuracy than sEMG modality. However, AUS is far less reliable than sEMG in actual long-term use. To resolve this contradiction, we considered leveraging AUS as a teacher to supervise sEMG training better and learning an augmented sEMG representation. Firstly, a novel network architecture MINDS (MultI-branch Network with Diverse focuS) was proposed for gesture recognition, which was suitable for both sEMG and AUS modalities. Secondly, a cross modality knowledge distillation (CMKD) framework was proposed, to transfer the latent knowledge of AUS to sEMG through Kullback-Leibler divergence loss. The gesture recognition accuracies were compared between MINDS and the existing networks. The experimental results demonstrated that MINDS outperforms other networks under both sEMG and AUS modalities. Furthermore, the feasibility of the CMKD framework was evaluated on the proposed MINDS and other existing networks. The results revealed that with knowledge distillation from AUS, the accuracy of the sEMG modality obtained a significant improvement, regardless of the employed network architecture. This work confirms the superiority of the proposed MINDS network and the feasibility of the proposed CMKD framework.
科研通智能强力驱动
Strongly Powered by AbleSci AI