共价键
聚合物
材料科学
自组装
纳米技术
离子键合
微流控
自愈水凝胶
化学工程
高分子化学
化学
有机化学
复合材料
工程类
离子
作者
Xiaojing Bai,Qingxue Sun,Hao Cui,Luis P. B. Guerzoni,Stefan Wuttke,Fabian Kießling,Laura De Laporte,Twan Lammers,Yang Shi
标识
DOI:10.1002/adma.202109701
摘要
Polymer self-assembly is a crucial process in materials engineering. Currently, almost all polymer self-assembly is limited to non-covalent bonding methods, even though these methods have drawbacks as they require complicated synthesis techniques and produce relatively unstable structures. Here, a novel mechanism of covalent polymer self-assembly is discovered and employed to address drawbacks of non-covalent polymer self-assembly. A simple ketone homopolymer is found to self-assemble into nano- to macroscale hydrogels during covalent crosslinking. In contrast to non-covalent self-assembly, the covalent self-assembly is independent of and unaffected by solvent conditions (e.g., polarity and ionic strength) and does not require additional agents, e.g., organic solvents and surfactants. The covalent polymer self-assembly is subjected to a new mechanism of control by tuning the covalent crosslinking rate. This leads to nanogels with an unprecedented and tightly controlled range of dimensions from less than 10 nm to above 100 nm. Moreover, the crosslinking rate also regulates the assembly behavior of microgels fabricated by microfluidics. The microgels self-assemble into granular fibers, which is 3D printed into stable porous scaffolds. The novel covalent polymer assembly method has enormous potential to revolutionize multiscale materials fabrication for applications in drug delivery, tissue engineering, and many other fields.
科研通智能强力驱动
Strongly Powered by AbleSci AI