亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Review of Neural Network Modeling of Shape Memory Alloys

形状记忆合金 人工神经网络 人工智能 计算机科学 执行机构 形状记忆合金* 有限元法 深度学习 非线性系统 智能材料 机器人学 计算 人工肌肉 记忆模型 自动化 机械工程 控制工程 机器人 工程类 结构工程 材料科学 算法 纳米技术 物理 共享内存 操作系统 量子力学
作者
Rodayna Hmede,Frédéric Chapelle,Yuri Lapusta
出处
期刊:Sensors [MDPI AG]
卷期号:22 (15): 5610-5610 被引量:29
标识
DOI:10.3390/s22155610
摘要

Shape memory materials are smart materials that stand out because of several remarkable properties, including their shape memory effect. Shape memory alloys (SMAs) are largely used members of this family and have been innovatively employed in various fields, such as sensors, actuators, robotics, aerospace, civil engineering, and medicine. Many conventional, unconventional, experimental, and numerical methods have been used to study the properties of SMAs, their models, and their different applications. These materials exhibit nonlinear behavior. This fact complicates the use of traditional methods, such as the finite element method, and increases the computing time necessary to adequately model their different possible shapes and usages. Therefore, a promising solution is to develop new methodological approaches based on artificial intelligence (AI) that aims at efficient computation time and accurate results. AI has recently demonstrated some success in efficiently modeling SMA features with machine- and deep-learning methods. Notably, artificial neural networks (ANNs), a subsection of deep learning, have been applied to characterize SMAs. The present review highlights the importance of AI in SMA modeling and introduces the deep connection between ANNs and SMAs in the medical, robotic, engineering, and automation fields. After summarizing the general characteristics of ANNs and SMAs, we analyze various ANN types used for modeling the properties of SMAs according to their shapes, e.g., a wire as an actuator, a wire with a spring bias, wire systems, magnetic and porous materials, bars and rings, and reinforced concrete beams. The description focuses on the techniques used for NN architectures and learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
成就的白竹完成签到,获得积分10
3秒前
谷子完成签到 ,获得积分10
26秒前
Xiaoxiao应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
orixero应助科研通管家采纳,获得10
27秒前
33秒前
xjz240221完成签到 ,获得积分10
34秒前
Lucas应助xiaozhao采纳,获得10
42秒前
精灵夜雨发布了新的文献求助10
43秒前
万能图书馆应助gqqq采纳,获得30
44秒前
Noob_saibot完成签到,获得积分10
1分钟前
1分钟前
1分钟前
震动的听枫完成签到,获得积分10
1分钟前
爱静静应助Noob_saibot采纳,获得10
1分钟前
家家完成签到,获得积分10
1分钟前
俞思含发布了新的文献求助10
1分钟前
2分钟前
研友_LBorkn发布了新的文献求助10
2分钟前
Xiaoxiao应助科研通管家采纳,获得10
2分钟前
2分钟前
土豪的灵竹完成签到 ,获得积分10
2分钟前
2分钟前
狮子沟核聚变骡子完成签到 ,获得积分10
3分钟前
研友_LBorkn完成签到,获得积分10
3分钟前
gqqq完成签到,获得积分10
3分钟前
3分钟前
XCHI完成签到 ,获得积分10
3分钟前
gqqq发布了新的文献求助30
3分钟前
明亮紫易完成签到,获得积分10
3分钟前
gqqq发布了新的文献求助10
3分钟前
斯文败类应助稳重的睿渊采纳,获得10
4分钟前
4分钟前
Xiaoxiao应助科研通管家采纳,获得10
4分钟前
无花果应助科研通管家采纳,获得10
4分钟前
Xiaoxiao应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555693
求助须知:如何正确求助?哪些是违规求助? 3131341
关于积分的说明 9390797
捐赠科研通 2831055
什么是DOI,文献DOI怎么找? 1556299
邀请新用户注册赠送积分活动 726483
科研通“疑难数据库(出版商)”最低求助积分说明 715803