亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accelerating Computation of Acidity Constants and Redox Potentials for Aqueous Organic Redox Flow Batteries by Machine Learning Potential-Based Molecular Dynamics

化学 氧化还原 溶剂化 电解质 水溶液 化学物理 分子 流动电池 计算化学 无机化学 物理化学 有机化学 电极
作者
Feng Wang,Ze-Bing Ma,Jun Cheng
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:146 (21): 14566-14575 被引量:26
标识
DOI:10.1021/jacs.4c01221
摘要

Due to the increased concern about energy and environmental issues, significant attention has been paid to the development of large-scale energy storage devices to facilitate the utilization of clean energy sources. The redox flow battery (RFB) is one of the most promising systems. Recently, the high cost of transition-metal complex-based RFB has promoted the development of aqueous RFBs with redox-active organic molecules. To expand the working voltage, computational chemistry has been applied to search for organic molecules with lower or higher redox potentials. However, redox potential computation based on implicit solvation models would be challenging due to difficulty in parametrization when considering the complex solvation of supporting electrolytes. Besides, although ab initio molecular dynamics (AIMD) describes the supporting electrolytes with the same level of electronic structure theory as the redox couple, the application is impeded by the high computation costs. Recently, machine learning molecular dynamics (MLMD) has been illustrated to accelerate AIMD by several orders of magnitude without sacrificing the accuracy. It has been established that redox potentials can be computed by MLMD with two separated machine learning potentials (MLPs) for reactant and product states, which is redundant and inefficient. In this work, an automated workflow is developed to construct a universal MLP for both states, which can compute the redox potentials or acidity constants of redox-active organic molecules more efficiently. Furthermore, the predicted redox potentials can be evaluated at the hybrid functional level with much lower costs, which would facilitate the design of aqueous organic RFBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蜗牛完成签到,获得积分20
4秒前
4秒前
于富强发布了新的文献求助10
22秒前
Akim应助科研通管家采纳,获得10
23秒前
爆米花应助科研通管家采纳,获得10
23秒前
香蕉觅云应助科研通管家采纳,获得10
23秒前
科目三应助科研通管家采纳,获得10
23秒前
清飏应助科研通管家采纳,获得10
24秒前
阿布应助科研通管家采纳,获得10
24秒前
jy发布了新的文献求助10
25秒前
摸鱼大王完成签到 ,获得积分10
26秒前
Tendency完成签到 ,获得积分10
28秒前
28秒前
29秒前
jy完成签到,获得积分10
34秒前
大模型应助吉吉急急急采纳,获得10
40秒前
42秒前
UU完成签到,获得积分10
45秒前
调皮醉波完成签到 ,获得积分10
49秒前
Jamesliu完成签到,获得积分10
49秒前
闪闪的晓丝完成签到 ,获得积分10
50秒前
neao完成签到 ,获得积分10
53秒前
1分钟前
哩哩完成签到 ,获得积分10
1分钟前
zpmz完成签到 ,获得积分10
1分钟前
Criminology34举报11求助涉嫌违规
1分钟前
1分钟前
dywen完成签到,获得积分10
1分钟前
科研q完成签到 ,获得积分10
1分钟前
DrW完成签到,获得积分10
1分钟前
Jason完成签到 ,获得积分10
1分钟前
陈陈完成签到 ,获得积分20
1分钟前
1分钟前
Jasper应助秋浱采纳,获得10
1分钟前
英姑应助王小帅ok采纳,获得10
1分钟前
1分钟前
自由念露完成签到 ,获得积分10
1分钟前
1分钟前
ding应助忧心的迎天采纳,获得10
2分钟前
王小帅ok发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634505
求助须知:如何正确求助?哪些是违规求助? 4731494
关于积分的说明 14988674
捐赠科研通 4792284
什么是DOI,文献DOI怎么找? 2559447
邀请新用户注册赠送积分活动 1519756
关于科研通互助平台的介绍 1479875