Accelerating Computation of Acidity Constants and Redox Potentials for Aqueous Organic Redox Flow Batteries by Machine Learning Potential-Based Molecular Dynamics

化学 氧化还原 溶剂化 电解质 水溶液 化学物理 分子 流动电池 计算化学 无机化学 物理化学 有机化学 电极
作者
Feng Wang,Ze-Bing Ma,Jun Cheng
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:146 (21): 14566-14575 被引量:26
标识
DOI:10.1021/jacs.4c01221
摘要

Due to the increased concern about energy and environmental issues, significant attention has been paid to the development of large-scale energy storage devices to facilitate the utilization of clean energy sources. The redox flow battery (RFB) is one of the most promising systems. Recently, the high cost of transition-metal complex-based RFB has promoted the development of aqueous RFBs with redox-active organic molecules. To expand the working voltage, computational chemistry has been applied to search for organic molecules with lower or higher redox potentials. However, redox potential computation based on implicit solvation models would be challenging due to difficulty in parametrization when considering the complex solvation of supporting electrolytes. Besides, although ab initio molecular dynamics (AIMD) describes the supporting electrolytes with the same level of electronic structure theory as the redox couple, the application is impeded by the high computation costs. Recently, machine learning molecular dynamics (MLMD) has been illustrated to accelerate AIMD by several orders of magnitude without sacrificing the accuracy. It has been established that redox potentials can be computed by MLMD with two separated machine learning potentials (MLPs) for reactant and product states, which is redundant and inefficient. In this work, an automated workflow is developed to construct a universal MLP for both states, which can compute the redox potentials or acidity constants of redox-active organic molecules more efficiently. Furthermore, the predicted redox potentials can be evaluated at the hybrid functional level with much lower costs, which would facilitate the design of aqueous organic RFBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淑芬发布了新的文献求助10
刚刚
嘿嘿发布了新的文献求助10
1秒前
momo应助uuuu采纳,获得10
1秒前
nb小子完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
4秒前
小洋完成签到,获得积分10
5秒前
NIHAO完成签到,获得积分10
5秒前
Achhz发布了新的文献求助10
6秒前
LX完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
FadeSv完成签到,获得积分10
7秒前
sulin关注了科研通微信公众号
8秒前
NIHAO发布了新的文献求助10
8秒前
Chris发布了新的文献求助10
9秒前
不舍天真发布了新的文献求助10
9秒前
9秒前
酷波er应助熊猫采纳,获得10
9秒前
年轻迪奥发布了新的文献求助10
11秒前
11秒前
顾矜应助王艺霖采纳,获得10
11秒前
NI发布了新的文献求助10
12秒前
FIREWORK完成签到,获得积分10
12秒前
lwb完成签到,获得积分10
13秒前
13秒前
小洋关注了科研通微信公众号
13秒前
搜集达人应助LBQ采纳,获得10
14秒前
求知的周发布了新的文献求助30
18秒前
18秒前
彩色耳机完成签到,获得积分10
18秒前
平常兰发布了新的文献求助10
19秒前
19秒前
麦地娜发布了新的文献求助10
20秒前
21秒前
烟花应助害羞的天真采纳,获得10
21秒前
EliGolden完成签到,获得积分10
22秒前
义气的翅膀完成签到,获得积分10
23秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049