Accelerating Computation of Acidity Constants and Redox Potentials for Aqueous Organic Redox Flow Batteries by Machine Learning Potential-Based Molecular Dynamics

化学 氧化还原 溶剂化 电解质 水溶液 化学物理 分子 流动电池 计算化学 无机化学 物理化学 有机化学 电极
作者
Feng Wang,Ze-Bing Ma,Jun Cheng
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:146 (21): 14566-14575 被引量:26
标识
DOI:10.1021/jacs.4c01221
摘要

Due to the increased concern about energy and environmental issues, significant attention has been paid to the development of large-scale energy storage devices to facilitate the utilization of clean energy sources. The redox flow battery (RFB) is one of the most promising systems. Recently, the high cost of transition-metal complex-based RFB has promoted the development of aqueous RFBs with redox-active organic molecules. To expand the working voltage, computational chemistry has been applied to search for organic molecules with lower or higher redox potentials. However, redox potential computation based on implicit solvation models would be challenging due to difficulty in parametrization when considering the complex solvation of supporting electrolytes. Besides, although ab initio molecular dynamics (AIMD) describes the supporting electrolytes with the same level of electronic structure theory as the redox couple, the application is impeded by the high computation costs. Recently, machine learning molecular dynamics (MLMD) has been illustrated to accelerate AIMD by several orders of magnitude without sacrificing the accuracy. It has been established that redox potentials can be computed by MLMD with two separated machine learning potentials (MLPs) for reactant and product states, which is redundant and inefficient. In this work, an automated workflow is developed to construct a universal MLP for both states, which can compute the redox potentials or acidity constants of redox-active organic molecules more efficiently. Furthermore, the predicted redox potentials can be evaluated at the hybrid functional level with much lower costs, which would facilitate the design of aqueous organic RFBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxrzxr123完成签到,获得积分10
刚刚
刚刚
山野完成签到,获得积分10
1秒前
熊大完成签到,获得积分10
1秒前
libz发布了新的文献求助10
1秒前
上进完成签到 ,获得积分10
1秒前
2秒前
超级的千青完成签到 ,获得积分10
2秒前
foceman发布了新的文献求助10
2秒前
pure123完成签到,获得积分10
3秒前
专注的问寒应助xxxx采纳,获得20
3秒前
量子星尘发布了新的文献求助10
3秒前
luan完成签到,获得积分10
3秒前
Udo完成签到,获得积分10
3秒前
3秒前
3秒前
叶子完成签到,获得积分10
4秒前
4秒前
4秒前
俏皮绝山完成签到 ,获得积分10
4秒前
4秒前
小马甲应助Glitter采纳,获得10
4秒前
weiwei发布了新的文献求助10
4秒前
小二郎应助aaa采纳,获得10
4秒前
唠叨的富发布了新的文献求助10
5秒前
Meyako应助sky木槿采纳,获得10
5秒前
zwq完成签到,获得积分10
5秒前
5秒前
大模型应助ww采纳,获得30
5秒前
自然的曲奇完成签到 ,获得积分10
6秒前
6秒前
凌爽完成签到 ,获得积分10
6秒前
6秒前
Hello应助zhaojiachao采纳,获得10
6秒前
7秒前
7秒前
领导范儿应助清欢采纳,获得10
7秒前
科研通AI6应助fxyfxy采纳,获得10
7秒前
7秒前
玉婷完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645868
求助须知:如何正确求助?哪些是违规求助? 4769933
关于积分的说明 15032529
捐赠科研通 4804556
什么是DOI,文献DOI怎么找? 2569078
邀请新用户注册赠送积分活动 1526182
关于科研通互助平台的介绍 1485721