亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accelerating Computation of Acidity Constants and Redox Potentials for Aqueous Organic Redox Flow Batteries by Machine Learning Potential-Based Molecular Dynamics

化学 氧化还原 溶剂化 电解质 水溶液 化学物理 分子 流动电池 计算化学 无机化学 物理化学 有机化学 电极
作者
Feng Wang,Zebing Ma,Jun Cheng
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:146 (21): 14566-14575 被引量:1
标识
DOI:10.1021/jacs.4c01221
摘要

Due to the increased concern about energy and environmental issues, significant attention has been paid to the development of large-scale energy storage devices to facilitate the utilization of clean energy sources. The redox flow battery (RFB) is one of the most promising systems. Recently, the high cost of transition-metal complex-based RFB has promoted the development of aqueous RFBs with redox-active organic molecules. To expand the working voltage, computational chemistry has been applied to search for organic molecules with lower or higher redox potentials. However, redox potential computation based on implicit solvation models would be challenging due to difficulty in parametrization when considering the complex solvation of supporting electrolytes. Besides, although ab initio molecular dynamics (AIMD) describes the supporting electrolytes with the same level of electronic structure theory as the redox couple, the application is impeded by the high computation costs. Recently, machine learning molecular dynamics (MLMD) has been illustrated to accelerate AIMD by several orders of magnitude without sacrificing the accuracy. It has been established that redox potentials can be computed by MLMD with two separated machine learning potentials (MLPs) for reactant and product states, which is redundant and inefficient. In this work, an automated workflow is developed to construct a universal MLP for both states, which can compute the redox potentials or acidity constants of redox-active organic molecules more efficiently. Furthermore, the predicted redox potentials can be evaluated at the hybrid functional level with much lower costs, which would facilitate the design of aqueous organic RFBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
婷123完成签到 ,获得积分10
1秒前
慕青应助栗子采纳,获得10
7秒前
23秒前
锋芒不毕露完成签到,获得积分10
23秒前
mhyaoxuan完成签到,获得积分10
33秒前
天天快乐应助科研通管家采纳,获得10
36秒前
38秒前
50秒前
52秒前
Zeon723完成签到 ,获得积分10
1分钟前
moiumuio完成签到,获得积分10
1分钟前
咿咿呀呀完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
炎星语完成签到,获得积分10
1分钟前
eurhfe完成签到,获得积分10
1分钟前
2分钟前
科研通AI2S应助shiyi采纳,获得10
2分钟前
在水一方应助yixueshng采纳,获得10
2分钟前
嗯哼应助科研通管家采纳,获得20
2分钟前
寻道图强应助科研通管家采纳,获得30
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
思源应助科研通管家采纳,获得10
2分钟前
yixueshng完成签到 ,获得积分10
2分钟前
怡宝发布了新的文献求助10
2分钟前
菠萝吹雪完成签到,获得积分10
3分钟前
3分钟前
to完成签到 ,获得积分10
3分钟前
孤独蘑菇完成签到 ,获得积分10
3分钟前
3分钟前
暴躁的幼荷完成签到 ,获得积分10
3分钟前
YifanWang给悦_的求助进行了留言
3分钟前
3分钟前
3分钟前
3分钟前
刻苦海露发布了新的文献求助10
3分钟前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 800
Co-opetition under Endogenous Bargaining Power 666
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3211056
求助须知:如何正确求助?哪些是违规求助? 2860096
关于积分的说明 8122656
捐赠科研通 2525770
什么是DOI,文献DOI怎么找? 1359596
科研通“疑难数据库(出版商)”最低求助积分说明 643012
邀请新用户注册赠送积分活动 614987