Accelerating Computation of Acidity Constants and Redox Potentials for Aqueous Organic Redox Flow Batteries by Machine Learning Potential-Based Molecular Dynamics

化学 氧化还原 溶剂化 电解质 水溶液 化学物理 分子 流动电池 计算化学 无机化学 物理化学 有机化学 电极
作者
Feng Wang,Zhenling Ma,Jun Cheng
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:146 (21): 14566-14575
标识
DOI:10.1021/jacs.4c01221
摘要

Due to the increased concern about energy and environmental issues, significant attention has been paid to the development of large-scale energy storage devices to facilitate the utilization of clean energy sources. The redox flow battery (RFB) is one of the most promising systems. Recently, the high cost of transition-metal complex-based RFB has promoted the development of aqueous RFBs with redox-active organic molecules. To expand the working voltage, computational chemistry has been applied to search for organic molecules with lower or higher redox potentials. However, redox potential computation based on implicit solvation models would be challenging due to difficulty in parametrization when considering the complex solvation of supporting electrolytes. Besides, although ab initio molecular dynamics (AIMD) describes the supporting electrolytes with the same level of electronic structure theory as the redox couple, the application is impeded by the high computation costs. Recently, machine learning molecular dynamics (MLMD) has been illustrated to accelerate AIMD by several orders of magnitude without sacrificing the accuracy. It has been established that redox potentials can be computed by MLMD with two separated machine learning potentials (MLPs) for reactant and product states, which is redundant and inefficient. In this work, an automated workflow is developed to construct a universal MLP for both states, which can compute the redox potentials or acidity constants of redox-active organic molecules more efficiently. Furthermore, the predicted redox potentials can be evaluated at the hybrid functional level with much lower costs, which would facilitate the design of aqueous organic RFBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助开朗的海莲采纳,获得10
刚刚
Soaring完成签到 ,获得积分10
1秒前
沁一发布了新的文献求助30
1秒前
2秒前
villanelle关注了科研通微信公众号
2秒前
剪刀手完成签到,获得积分10
2秒前
领导范儿应助Yuki采纳,获得10
2秒前
1234567xjy发布了新的文献求助10
3秒前
xuhhh完成签到,获得积分10
3秒前
3秒前
筷子夹豆腐脑完成签到,获得积分10
4秒前
5秒前
Hermione发布了新的文献求助10
6秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
大模型应助科研通管家采纳,获得10
7秒前
7秒前
JamesPei应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
田様应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
12秒前
12秒前
14秒前
ding应助xiaxue采纳,获得10
14秒前
柔弱友卉应助zjq采纳,获得10
15秒前
langwang完成签到,获得积分10
16秒前
王不留行发布了新的文献求助10
16秒前
爆米花应助苏yyyyy采纳,获得10
17秒前
18秒前
剪刀手发布了新的文献求助10
18秒前
灵试巧开完成签到 ,获得积分10
20秒前
我我完成签到 ,获得积分10
21秒前
燕子应助1234567xjy采纳,获得20
22秒前
22秒前
高分求助中
LNG地下式貯槽指針(JGA指-107) 1000
LNG地上式貯槽指針 (JGA指 ; 108) 1000
QMS18Ed2 | process management. 2nd ed 600
LNG as a marine fuel—Safety and Operational Guidelines - Bunkering 560
How Stories Change Us A Developmental Science of Stories from Fiction and Real Life 500
九经直音韵母研究 500
Full waveform acoustic data processing 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2935623
求助须知:如何正确求助?哪些是违规求助? 2591387
关于积分的说明 6981243
捐赠科研通 2236228
什么是DOI,文献DOI怎么找? 1187521
版权声明 589879
科研通“疑难数据库(出版商)”最低求助积分说明 581330