孟德尔随机化
免疫系统
免疫学
转录组
生物
因果推理
神经科学
医学
基因
遗传学
病理
基因表达
遗传变异
基因型
作者
Yun-hu Yu,Shiao Tong,Tao Liu,Yunpeng Cai,Yuanmei Song,Hang Zhou,Rongcai Jiang
摘要
Cerebral aneurysm (CA) represents a significant clinical challenge, characterized by pathological dilation of cerebral arteries. Recent evidence underscores the crucial involvement of immune cells in CA pathogenesis. This study aims to explore the complex interplay between immune cells and CA formation. We analyzed single-cell RNA sequencing data from the GSE193533 dataset, focusing on unruptured CA and their controls. Comprehensive cell-type identification and pseudo-time trajectory analyses were conducted to delineate the dynamic shifts in immune cell populations. Additionally, a two-sample Mendelian randomization (MR) approach was employed to investigate the causal influence of various immunophenotypes on CA susceptibility and the reciprocal effect of CA formation on immune phenotypes. Single-cell transcriptomic analysis revealed a progressive loss of vascular smooth muscle cells (VSMCs) and an increase in monocytes/macrophages (Mo/MΦ) and other immune cells, signifying a shift from a structural to an inflammatory milieu in CA evolution. MR analysis identified some vital immunophenotypes, such as CD64 on CD14+ CD16+ monocytes (OR: 1.236, 95% CI: 1.064-1.435, P = 0.006), as potential risk factors for CA development, while others, like CD28- CD8br %CD8br (OR: 0.883, 95% CI: 0.789-0.988, P = 0.030), appeared protective. Reverse MR analysis demonstrated that CA formation could modulate specific immunophenotypic expressions, highlighting a complex bidirectional interaction between CA pathology and immune response. This study underscores the pivotal role of immune cells in this process through the integration of single-cell transcriptomics with MR analysis, offering a comprehensive perspective on CA pathogenesis, and potentially guiding future therapeutic strategies targeting specific immune pathways.
科研通智能强力驱动
Strongly Powered by AbleSci AI