Automatically Inspecting Thousands of Static Bug Warnings with Large Language Model: How Far Are We?

计算机科学 自然语言处理 人工智能
作者
Cheng Wen,Yuandao Cai,Bin Zhang,Jie Su,Zhiwu Xu,Dugang Liu,Shengchao Qin,Zhong Ming,Cong Tian
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (7): 1-34 被引量:6
标识
DOI:10.1145/3653718
摘要

Static analysis tools for capturing bugs and vulnerabilities in software programs are widely employed in practice, as they have the unique advantages of high coverage and independence from the execution environment. However, existing tools for analyzing large codebases often produce a great deal of false warnings over genuine bug reports. As a result, developers are required to manually inspect and confirm each warning, a challenging, time-consuming, and automation-essential task. This article advocates a fast, general, and easily extensible approach called Llm4sa that automatically inspects a sheer volume of static warnings by harnessing (some of) the powers of Large Language Models (LLMs). Our key insight is that LLMs have advanced program understanding capabilities, enabling them to effectively act as human experts in conducting manual inspections on bug warnings with their relevant code snippets. In this spirit, we propose a static analysis to effectively extract the relevant code snippets via program dependence traversal guided by the bug warning reports themselves. Then, by formulating customized questions that are enriched with domain knowledge and representative cases to query LLMs, Llm4sa can remove a great deal of false warnings and facilitate bug discovery significantly. Our experiments demonstrate that Llm4sa is practical in automatically inspecting thousands of static warnings from Juliet benchmark programs and 11 real-world C/C++ projects, showcasing a high precision (81.13%) and a recall rate (94.64%) for a total of 9,547 bug warnings. Our research introduces new opportunities and methodologies for using the LLMs to reduce human labor costs, improve the precision of static analyzers, and ensure software trustworthiness
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shanika发布了新的文献求助10
1秒前
2秒前
光亮含羞草完成签到,获得积分10
2秒前
赘婿应助大方的半莲采纳,获得10
3秒前
4秒前
科目三应助彪壮的绮烟采纳,获得10
4秒前
华仔应助JulyH采纳,获得10
5秒前
5秒前
6秒前
8秒前
12345发布了新的文献求助10
8秒前
发100篇SCI完成签到,获得积分10
8秒前
shanika完成签到,获得积分10
9秒前
巧克力布朗尼完成签到 ,获得积分10
9秒前
9秒前
Ali应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得20
10秒前
10秒前
朴实凝阳发布了新的文献求助10
10秒前
小二郎应助一个橡果采纳,获得10
10秒前
饱满一刀完成签到,获得积分10
11秒前
彪壮的绮烟完成签到,获得积分10
11秒前
听书人发布了新的文献求助10
11秒前
12秒前
李心怡完成签到,获得积分10
12秒前
13秒前
发100篇SCI发布了新的文献求助10
14秒前
我是老大应助Nature采纳,获得10
14秒前
丰富赛凤发布了新的文献求助10
15秒前
碧蓝无色完成签到,获得积分10
16秒前
小蘑菇应助踟蹰采纳,获得10
17秒前
大个应助浅梦采纳,获得10
18秒前
Ava应助研玲采纳,获得10
18秒前
追寻夏烟关注了科研通微信公众号
19秒前
20秒前
21秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170704
求助须知:如何正确求助?哪些是违规求助? 2821739
关于积分的说明 7936289
捐赠科研通 2482180
什么是DOI,文献DOI怎么找? 1322371
科研通“疑难数据库(出版商)”最低求助积分说明 633620
版权声明 602608