Automatically Inspecting Thousands of Static Bug Warnings with Large Language Model: How Far Are We?

计算机科学 自然语言处理 人工智能
作者
Cheng Wen,Yuandao Cai,Bin Zhang,Jie Su,Zhiwu Xu,Dugang Liu,Shengchao Qin,Zhong Ming,Cong Tian
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (7): 1-34 被引量:6
标识
DOI:10.1145/3653718
摘要

Static analysis tools for capturing bugs and vulnerabilities in software programs are widely employed in practice, as they have the unique advantages of high coverage and independence from the execution environment. However, existing tools for analyzing large codebases often produce a great deal of false warnings over genuine bug reports. As a result, developers are required to manually inspect and confirm each warning, a challenging, time-consuming, and automation-essential task. This article advocates a fast, general, and easily extensible approach called Llm4sa that automatically inspects a sheer volume of static warnings by harnessing (some of) the powers of Large Language Models (LLMs). Our key insight is that LLMs have advanced program understanding capabilities, enabling them to effectively act as human experts in conducting manual inspections on bug warnings with their relevant code snippets. In this spirit, we propose a static analysis to effectively extract the relevant code snippets via program dependence traversal guided by the bug warning reports themselves. Then, by formulating customized questions that are enriched with domain knowledge and representative cases to query LLMs, Llm4sa can remove a great deal of false warnings and facilitate bug discovery significantly. Our experiments demonstrate that Llm4sa is practical in automatically inspecting thousands of static warnings from Juliet benchmark programs and 11 real-world C/C++ projects, showcasing a high precision (81.13%) and a recall rate (94.64%) for a total of 9,547 bug warnings. Our research introduces new opportunities and methodologies for using the LLMs to reduce human labor costs, improve the precision of static analyzers, and ensure software trustworthiness
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
空禅yew完成签到,获得积分10
刚刚
坚强亦丝应助跳跃采纳,获得10
2秒前
英俊的铭应助cc采纳,获得10
2秒前
huangsan完成签到,获得积分10
2秒前
匹诺曹完成签到,获得积分10
2秒前
3秒前
华仔应助进取拼搏采纳,获得10
3秒前
4秒前
dingdong发布了新的文献求助10
4秒前
you完成签到 ,获得积分10
5秒前
qwf完成签到 ,获得积分10
5秒前
6秒前
万能图书馆应助一一采纳,获得10
6秒前
执着跳跳糖完成签到 ,获得积分10
7秒前
阳yang完成签到,获得积分10
7秒前
牛头人完成签到,获得积分10
7秒前
8秒前
Rrr发布了新的文献求助10
8秒前
9秒前
9秒前
serenity完成签到 ,获得积分10
9秒前
Benliu完成签到,获得积分10
9秒前
csq发布了新的文献求助10
10秒前
11秒前
Hello应助外向的醉易采纳,获得10
11秒前
DWWWDAADAD完成签到,获得积分10
14秒前
科研通AI5应助一天八杯水采纳,获得10
15秒前
杨大仙儿完成签到 ,获得积分10
15秒前
17秒前
坚强的广山应助木头人采纳,获得200
17秒前
嘻哈学习完成签到,获得积分10
17秒前
17秒前
17秒前
ying完成签到,获得积分10
18秒前
18秒前
虚幻白玉完成签到,获得积分10
19秒前
安静的孤萍完成签到,获得积分10
20秒前
20秒前
lyz666发布了新的文献求助10
20秒前
liuxl发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808