Automatically Inspecting Thousands of Static Bug Warnings with Large Language Model: How Far Are We?

计算机科学 自然语言处理 人工智能
作者
Cheng Wen,Yuandao Cai,Bin Zhang,Jie Su,Zhiwu Xu,Dugang Liu,Shengchao Qin,Zhong Ming,Cong Tian
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (7): 1-34 被引量:6
标识
DOI:10.1145/3653718
摘要

Static analysis tools for capturing bugs and vulnerabilities in software programs are widely employed in practice, as they have the unique advantages of high coverage and independence from the execution environment. However, existing tools for analyzing large codebases often produce a great deal of false warnings over genuine bug reports. As a result, developers are required to manually inspect and confirm each warning, a challenging, time-consuming, and automation-essential task. This article advocates a fast, general, and easily extensible approach called Llm4sa that automatically inspects a sheer volume of static warnings by harnessing (some of) the powers of Large Language Models (LLMs). Our key insight is that LLMs have advanced program understanding capabilities, enabling them to effectively act as human experts in conducting manual inspections on bug warnings with their relevant code snippets. In this spirit, we propose a static analysis to effectively extract the relevant code snippets via program dependence traversal guided by the bug warning reports themselves. Then, by formulating customized questions that are enriched with domain knowledge and representative cases to query LLMs, Llm4sa can remove a great deal of false warnings and facilitate bug discovery significantly. Our experiments demonstrate that Llm4sa is practical in automatically inspecting thousands of static warnings from Juliet benchmark programs and 11 real-world C/C++ projects, showcasing a high precision (81.13%) and a recall rate (94.64%) for a total of 9,547 bug warnings. Our research introduces new opportunities and methodologies for using the LLMs to reduce human labor costs, improve the precision of static analyzers, and ensure software trustworthiness
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助Binbin采纳,获得10
1秒前
菠萝派发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
混吃等死研究生完成签到,获得积分10
2秒前
pbw9123完成签到,获得积分10
3秒前
Alone离殇发布了新的文献求助10
3秒前
小幸运完成签到,获得积分10
5秒前
NexusExplorer应助鲤鱼芷波采纳,获得10
6秒前
6秒前
6秒前
霸的彤完成签到,获得积分10
7秒前
路遥完成签到,获得积分10
8秒前
Trisun完成签到,获得积分20
9秒前
9秒前
10秒前
12秒前
13秒前
fhbsdufh发布了新的文献求助10
13秒前
zhh完成签到,获得积分20
14秒前
NexusExplorer应助zzz采纳,获得10
14秒前
15秒前
pbw9123发布了新的文献求助10
15秒前
89757完成签到,获得积分10
16秒前
16秒前
小学霸搞科研完成签到 ,获得积分10
17秒前
17秒前
littlestone完成签到,获得积分10
18秒前
18秒前
18秒前
zhh发布了新的文献求助10
19秒前
Trisun发布了新的文献求助10
20秒前
le完成签到,获得积分10
22秒前
活泼灵枫发布了新的文献求助10
25秒前
zhaoyuyuan发布了新的文献求助10
25秒前
25秒前
26秒前
27秒前
Ava应助扶桑采纳,获得10
28秒前
小谢不谢发布了新的文献求助10
29秒前
lize5493发布了新的文献求助10
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956068
求助须知:如何正确求助?哪些是违规求助? 3502276
关于积分的说明 11107024
捐赠科研通 3232788
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870389
科研通“疑难数据库(出版商)”最低求助积分说明 802011