Parametric modeling and deep learning-based forward and inverse design for acoustic metamaterial plates

反向 参数统计 超材料 声学 参数化模型 反问题 参数化设计 材料科学 计算机科学 物理 光学 数学 几何学 数学分析 统计
作者
Hui Guo,Weiqian Chen,Y.S. Wang,Fuyin Ma,Pei Sun,Tao Yuan,Xiaolong Xie
出处
期刊:Mechanics of Advanced Materials and Structures [Informa]
卷期号:31 (30): 12986-12996 被引量:1
标识
DOI:10.1080/15376494.2024.2330488
摘要

Acoustic metamaterials (AMMs), with extraordinary physical properties, could be used to suppress the specific frequencies elastic waves by altering the structure artificially. However, as the complexity of AMMs structures continues to rise, classical design methods are time-consuming and high-computational. Therefore, there is a pressing need to explore more efficient and accurate design methods for AMMs. In this work, a deep learning algorithm-based forward and inverse design method for acoustic metamaterial plates (AMPs) is proposed. First, the initial samples of AMPs are created with parametric model and the bandgaps properties of the AMPs are generated by the finite element method. The dataset consists of different structure parameters and corresponding bandgap characteristics. Then, A neural network model is constructed by concatenating a pretraining network and an inverse design network. Through inputting the dataset to the concatenated network, the mapping relationship between the structural parameters and the bandgap characteristics of the AMPs can be explored. Ultimately, the trained network enables both forward designs, yielding bandgap characteristics for given structural parameters, and inverse design, deducing structural parameters for specific bandgap characteristics. The accuracy of the proposed design methodology is verified through illustrative examples. The results demonstrate that the trained neuron networks can effectively replace the complex physical mechanisms between the structural parameters and bandgap characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xunxunmimi完成签到,获得积分10
刚刚
刚刚
刚刚
刘星星发布了新的文献求助10
1秒前
CodeCraft应助科研菜鸟采纳,获得20
1秒前
zyyyyyyyyyyy完成签到,获得积分10
2秒前
3秒前
研友_8yN60L发布了新的文献求助30
3秒前
打打应助柳七采纳,获得10
4秒前
零零二完成签到 ,获得积分10
4秒前
韭菜盒子发布了新的文献求助10
5秒前
Maestro_S完成签到,获得积分0
5秒前
volzzz发布了新的文献求助10
5秒前
wgglegg完成签到,获得积分10
5秒前
科研通AI5应助小胖鱼采纳,获得10
5秒前
酷波er应助黄超采纳,获得10
5秒前
5秒前
大智若愚啊完成签到,获得积分20
5秒前
6秒前
6秒前
6秒前
彬彬发布了新的文献求助10
6秒前
健壮丹妗完成签到 ,获得积分10
6秒前
Orange应助铸一字错采纳,获得10
6秒前
6秒前
Accept应助阿烨采纳,获得10
8秒前
欧阳小枫发布了新的文献求助10
9秒前
10秒前
Heidi完成签到 ,获得积分10
10秒前
见雨鱼发布了新的文献求助10
10秒前
学术扛把子完成签到 ,获得积分10
10秒前
Lucas应助陈某某采纳,获得10
10秒前
尊敬的钥匙完成签到,获得积分10
11秒前
12秒前
12秒前
赘婿应助无情的白桃采纳,获得10
12秒前
习习应助zhu96114748采纳,获得10
13秒前
英姑应助韭菜盒子采纳,获得10
13秒前
jbzmm完成签到 ,获得积分10
13秒前
36456657应助虚安采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740