Parametric modeling and deep learning-based forward and inverse design for acoustic metamaterial plates

反向 参数统计 超材料 声学 参数化模型 反问题 参数化设计 材料科学 计算机科学 物理 光学 数学 几何学 数学分析 统计
作者
Hui Guo,Weiqian Chen,Y.S. Wang,Fuyin Ma,Pei Sun,Tao Yuan,Xiaolong Xie
出处
期刊:Mechanics of Advanced Materials and Structures [Taylor & Francis]
卷期号:31 (30): 12986-12996 被引量:1
标识
DOI:10.1080/15376494.2024.2330488
摘要

Acoustic metamaterials (AMMs), with extraordinary physical properties, could be used to suppress the specific frequencies elastic waves by altering the structure artificially. However, as the complexity of AMMs structures continues to rise, classical design methods are time-consuming and high-computational. Therefore, there is a pressing need to explore more efficient and accurate design methods for AMMs. In this work, a deep learning algorithm-based forward and inverse design method for acoustic metamaterial plates (AMPs) is proposed. First, the initial samples of AMPs are created with parametric model and the bandgaps properties of the AMPs are generated by the finite element method. The dataset consists of different structure parameters and corresponding bandgap characteristics. Then, A neural network model is constructed by concatenating a pretraining network and an inverse design network. Through inputting the dataset to the concatenated network, the mapping relationship between the structural parameters and the bandgap characteristics of the AMPs can be explored. Ultimately, the trained network enables both forward designs, yielding bandgap characteristics for given structural parameters, and inverse design, deducing structural parameters for specific bandgap characteristics. The accuracy of the proposed design methodology is verified through illustrative examples. The results demonstrate that the trained neuron networks can effectively replace the complex physical mechanisms between the structural parameters and bandgap characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助MZ采纳,获得10
刚刚
ED应助科研通管家采纳,获得10
刚刚
黄bb应助科研通管家采纳,获得50
刚刚
无花果应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得30
1秒前
无花果应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得50
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
Hello应助mint采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
2秒前
2秒前
koi完成签到,获得积分10
2秒前
2秒前
2秒前
哇哦哦发布了新的文献求助10
3秒前
Skuld完成签到,获得积分10
3秒前
共清欢完成签到,获得积分10
3秒前
3秒前
oppozhuimeng完成签到,获得积分10
3秒前
xsxakn完成签到,获得积分10
3秒前
4秒前
4秒前
非要起名完成签到,获得积分10
4秒前
4秒前
Ruadong发布了新的文献求助10
4秒前
冷酷的啤酒完成签到,获得积分10
5秒前
时无悕发布了新的文献求助30
5秒前
BA完成签到,获得积分10
6秒前
奔向那片光明和磊落完成签到,获得积分10
6秒前
myLv98完成签到,获得积分10
6秒前
6秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958507
求助须知:如何正确求助?哪些是违规求助? 3504843
关于积分的说明 11120375
捐赠科研通 3236122
什么是DOI,文献DOI怎么找? 1788663
邀请新用户注册赠送积分活动 871249
科研通“疑难数据库(出版商)”最低求助积分说明 802642