氧化还原
硫黄
法拉第效率
水溶液
电化学
电池(电)
储能
化学
溶解度
无机化学
材料科学
动力学
化学工程
纳米技术
工艺工程
电极
工程类
有机化学
热力学
物理
冶金
功率(物理)
量子力学
物理化学
作者
Boya Wang,Wanhai Zhou,Yanyan Zhang,Tengsheng Zhang,Xinran Li,Yutong Feng,Ruizheng Zhao,Wei Li,Ahmed A. Elzatahry,Yasser A. Hassan,Dongyuan Zhao,Dongliang Chao
出处
期刊:Joule
[Elsevier]
日期:2024-04-19
卷期号:8 (7): 2033-2048
被引量:9
标识
DOI:10.1016/j.joule.2024.03.021
摘要
Potassium-sulfur electrochemistry represents a compelling energy storage technology due to its cost-efficient chemicals and unparalleled capacity. However, achieving high sulfur redox utilization (SRU) remains a great challenge during K+ storage due to K2Sn kinetics inertia. Here, for the first time, we unveil an aqueous K+-S electrochemistry, leveraging boosted K2Sn conversion kinetics in water. A stable two-electron charge transfer process is achieved via tuning K2S solubility. Spectroscopic evaluation and molecular dynamics simulations reveal a unique solid-liquid-solid conversion pathway (S ↔ K2S4 ↔ K2S), which effectively avoids soluble K2S shuttling. Consequently, an unprecedented K+ storage capacity of 1,619 mAh g−1 (ca. 96% SRU) can be achieved with 95% initial Coulombic efficiency, appealing cyclability over 500 times, and a high-energy density of 392 Wh kgS+Zn−1. These findings signify a paradigm shift and introduce transformative opportunities for the design of safe and high-energy aqueous batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI