C3TB-YOLOv5: integrated YOLOv5 with transformer for object detection in high-resolution remote sensing images

计算机视觉 遥感 计算机科学 人工智能 变压器 高分辨率 地理 工程类 电气工程 电压
作者
Qinggang Wu,Yang Li,Wei Huang,Qiqiang Chen,Yonglei Wu
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:45 (8): 2622-2650 被引量:3
标识
DOI:10.1080/01431161.2024.2329528
摘要

In the realm of object detection from high-resolution remote sensing images (HRRSIs), the existing YOLOv5 methods encounter several challenges, including dense object arrangements, small object sizes, and complex backgrounds. To tackle these challenges, we propose a novel approach called C3TB-YOLOv5, which combines traditional YOLOv5 with the Transformer model to detect objects in HRRSIs. Unlike conventional YOLOv5 methods that primarily focus on capturing local information from remote sensing scenes, our C3TB-YOLOv5 method incorporates global information through the introduction of a new C3TB module. This module, based on the Transformer multi-head attention mechanism (AM), consists of two branches that extract local and global information from feature maps. By integrating these branches and establishing long-range relationships, our method successfully detects densely arranged small objects in HRRSIs. Furthermore, to improve the accuracy of tiny object detection, a novel detection head has been developed to effectively utilize the unused C3 module, thereby preventing the loss of fine-grained textures and positional features. In addition, we integrate an enhanced SimAM, namely Sim-GMP, into the model to adjust the focus across varying regions, effectively distinguishing the features of interested objects from complex backgrounds. Finally, to address the problem of sample imbalance in remote sensing object detection, the most recent Wise-IoU v3 loss function is employed to improve the accuracy of anchor box predictions for objects. To maintain a high object detection speed, the most critical C3 modules are substituted with the proposed C3TB module for the purpose of striking a good balance between object detection accuracy and model lightweight. Extensive experiments conducted on two remote sensing datasets of NWPU VHR-10 and VisDrone 2019 demonstrates that our method achieves superior object detection performance than state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
激昂的藏鸟完成签到 ,获得积分10
1秒前
柠檬加冰发布了新的文献求助10
1秒前
xrkxrk完成签到 ,获得积分0
2秒前
善良书蕾完成签到,获得积分10
3秒前
xiaoruixue完成签到,获得积分10
3秒前
Xltox完成签到,获得积分10
4秒前
4秒前
浮浮世世发布了新的文献求助60
4秒前
LCct完成签到,获得积分20
4秒前
魔幻的醉柳完成签到,获得积分10
4秒前
李健应助封小封采纳,获得10
5秒前
任性的败完成签到,获得积分10
5秒前
小灰灰完成签到 ,获得积分10
5秒前
神冰小酱完成签到,获得积分10
5秒前
摆烂包菜发布了新的文献求助10
6秒前
无欲无求傻傻完成签到,获得积分10
6秒前
frozen完成签到,获得积分10
7秒前
tiger完成签到,获得积分10
8秒前
杰小瑞完成签到,获得积分10
8秒前
linxi完成签到,获得积分10
8秒前
子夜完成签到,获得积分10
9秒前
清秀不言完成签到 ,获得积分10
9秒前
echo完成签到,获得积分10
9秒前
科研八戒完成签到,获得积分10
9秒前
10秒前
悠夏sunny完成签到,获得积分10
10秒前
Apr9810h完成签到 ,获得积分10
10秒前
CEJ发布了新的文献求助10
11秒前
科研通AI5应助柠檬加冰采纳,获得10
11秒前
月亮上的猫完成签到,获得积分10
11秒前
俭朴的天薇完成签到,获得积分10
11秒前
小苹果完成签到,获得积分10
12秒前
健忘曼彤完成签到,获得积分10
12秒前
现实的幻露完成签到 ,获得积分10
13秒前
舒适的天奇完成签到 ,获得积分10
13秒前
无聊的山槐完成签到,获得积分10
13秒前
蛋挞蛋挞完成签到,获得积分10
14秒前
深情靳完成签到,获得积分10
14秒前
高挑的寒松完成签到 ,获得积分10
15秒前
青天鸟1989完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3510889
求助须知:如何正确求助?哪些是违规求助? 3093660
关于积分的说明 9218106
捐赠科研通 2788030
什么是DOI,文献DOI怎么找? 1529995
邀请新用户注册赠送积分活动 710681
科研通“疑难数据库(出版商)”最低求助积分说明 706311