摘要
Chapter 6 Vanadium Redox Flow Batteries (VRFB) Abrar Hussain, Abrar Hussain Department of Physics, Riphah International University, Islamabad, PakistanSearch for more papers by this authorMuhammad Tahir Khan, Muhammad Tahir Khan Department of Physics, Riphah International University, Islamabad, PakistanSearch for more papers by this authorSamad Yaseen, Samad Yaseen Department of Chemistry, Govt. Graduate College, Asghar Mall, Rawalpindi, PakistanSearch for more papers by this author Ata-ur-Rehman, Ata-ur-Rehman Department of Chemistry, Govt. Graduate College, Asghar Mall, Rawalpindi, PakistanSearch for more papers by this authorSyed Mustansar Abbas, Syed Mustansar Abbas Nanoscience & Technology Department, National Centre for Physics, Islamabad, PakistanSearch for more papers by this author Abrar Hussain, Abrar Hussain Department of Physics, Riphah International University, Islamabad, PakistanSearch for more papers by this authorMuhammad Tahir Khan, Muhammad Tahir Khan Department of Physics, Riphah International University, Islamabad, PakistanSearch for more papers by this authorSamad Yaseen, Samad Yaseen Department of Chemistry, Govt. Graduate College, Asghar Mall, Rawalpindi, PakistanSearch for more papers by this author Ata-ur-Rehman, Ata-ur-Rehman Department of Chemistry, Govt. Graduate College, Asghar Mall, Rawalpindi, PakistanSearch for more papers by this authorSyed Mustansar Abbas, Syed Mustansar Abbas Nanoscience & Technology Department, National Centre for Physics, Islamabad, PakistanSearch for more papers by this author Book Editor(s): Inamuddin, InamuddinSearch for more papers by this authorTariq Altalhi, Tariq AltalhiSearch for more papers by this author First published: 17 April 2024 https://doi.org/10.1002/9781119904960.ch6 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary The world meets energy demands by using fossil fuels and renewable energy resources. The present need of the global world is to work on energy sources that are economical and efficient. The world has now reduced the use of fossil fuels and is shifting toward renewable energy generation. Among these sources, the vanadium redox flow battery (VRFB) technology that has been developed recently is considered a better candidate for efficient storage of energy. The potential application of VRFB in energy storage is due to a change in its oxidation state from bivalent up to pentavalent (V 2+ , V 3+ , V 4+ , V 5+ ). This chapter covers the working principle, the main components of the VRFB system, and a comparison of VRFB with other electrochemical energy storage technologies. The recent developments on VRFB have been briefly explained. Finally, the most crucial learning research fields are discussed, as well as future development suggestions. References Wang , S. , Owusu , K.A. , Mai , L. , Ke , Y. , Zhou , Y. , Hu , P. , Magdassi , S. , Long , Y. , Vanadium dioxide for energy conservation and energy storage applications: Synthesis and performance improvement . Appl. Energy , 211 , 200 , 2018 . 10.1016/j.apenergy.2017.11.039 CASWeb of Science®Google Scholar U.S. Energy Information Administration (EIA) , U.S. Energy Facts Explained , Washington DC, USA , 2019 . Google Scholar International Energy Agency (IEA) . World Energy Outlook 2017 . https://www.iea.org/reports/world-energy-outlook-2017 . Google Scholar International Energy Agency (IEA) . World Energy Outlook 2019 . https://www.iea.org/reports/world-energy-outlook-2019 . Google Scholar Ibrahim , H. , Younès , I. , Perron , A.U. , Energy storage systems—characteristics comparisons . Renew. Sustain. Energy Rev. , 12 , 1221 – 1250 , 2008 . 10.1016/j.rser.2007.01.023 CASWeb of Science®Google Scholar Das , C.K. , Bass , O. , Kothapalli , G. , Mahmoud , T.S. , Habibi , D. , Optimal placement of distributed energy storage systems in distribution networks using artificial bee colony algorithm . Appl. Energy , 232 , 212 , 2018 . 10.1016/j.apenergy.2018.07.100 Web of Science®Google Scholar Messaggi , M. , Canzi , P. , Mereu , R. , Baricci , A. , Inzoli , F. , Casalegno , A. , Zago , M. , Analysis of flow field design on vanadium redox flow battery performance: Development of 3d computational fluid dynamic model and experimental validation . Appl. Energy , 228 , 1057 , 2018 . 10.1016/j.apenergy.2018.06.148 CASWeb of Science®Google Scholar Wei , Z. , Zhao , J. , Ji , D. , Tseng , K. , A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model . Appl. Energy , 204 , 1264 , 2017 . 10.1016/j.apenergy.2017.02.016 CASWeb of Science®Google Scholar Zhang , Y. , Campana , P.E. , Yang , Y. , Stridh , B. , Lundblad , A. , Yan , J. , Energy flexibility from the consumer: Integrating local electricity and heat supplies in a building . Appl. Energy , 223 , 430 , 2018 . 10.1016/j.apenergy.2018.04.041 Google Scholar Lin , G. , Chong , P.Y. , Yarlagadda , V. , Nguyen , T. , Wycisk , R. , Pintauro , P. , Bates , M. , Mukerjee , S. , Tucker , M. , Weber , A. , Advanced hydrogen-bromine flow batteries with improved efficiency, durability and cost . J. Electrochem. Soc. , 163 , A5049 , 2015 . 10.1149/2.0071601jes Web of Science®Google Scholar Ulaganathan , M. , Aravindan , V. , Yan , Q. , Madhavi , S. , Kazacos , M. , Lim , T.M. , Recent advancements in all-vanadium redox flow batteries . Adv. Mater. , 3 , 1500309 , 2016 . 10.1002/admi.201500309 Google Scholar Yang , J.H. , Yang , H.S. , Ra , H.W. , Shim , J. , Jeon , J.-D. , Effect of a surface active agent on performance of zinc/bromine redox flow batteries: Improvement in current efficiency and system stability . J. Power Sources , 275 , 294 , 2015 . 10.1016/j.jpowsour.2014.10.208 CASWeb of Science®Google Scholar Hawthorne , K.L. , Petek , T.J. , Miller , M.A. , Wainright , J.S. , Savinell , R.F. , An investigation into factors affecting the iron plating reaction for an all-iron flow battery . J. Electrochem. Soc. , 162 , A108 , 2014 . 10.1149/2.0591501jes Web of Science®Google Scholar Duduta , M. , Ho , B. , Wood , V.C. , Limthongkul , P. , Brunini , V.E. , Carter , W.C. , Chiang , Y.M. , Semi-solid lithium rechargeable flow battery . Adv. Mater. , 1 , 511 , 2011 . 10.1002/aenm.201100152 CASGoogle Scholar Sum , E. , Kazacos , M. , A study of the V(ii)/V(iii) redox couple for redox flow cell applications . J. Power Sources , 15 , 179 , 1985 . 10.1016/0378-7753(85)80071-9 CASWeb of Science®Google Scholar Tang , A. , Dynamic modelling and simulation of the all-vanadium redox flow battery , PhD thesis, Sydney, Australia : The University of New South Wales , 2013 . Google Scholar Eckroad , S. , Palo Alto , Ca. , Vanadium redox flow batteries: An in-depth analysis . Intl. J. Energy Res. , 39 , 1014836 , 2007 . Google Scholar Vafiadis , H. , Kazacos , M. , Evaluation of membranes for the novel vanadium bromine redox flow cell . J. Membr. Sci. , 279 , 394 , 2006 . 10.1016/j.memsci.2005.12.028 CASWeb of Science®Google Scholar Zhang , C. , Zhao , T. , Xu , Q. , An , L. , Zhao , G. , Effects of operating temperature on the performance of vanadium redox flow batteries . Appl. Energy , 155 , 349 , 2015 . 10.1016/j.apenergy.2015.06.002 CASWeb of Science®Google Scholar Bartolozzi , M. , Development of redox flow batteries . A historical bibliography. J. Power Sources , 27 , 219 , 1989 . 10.1016/0378-7753(89)80037-0 CASWeb of Science®Google Scholar Vinco , J.H. , Domingos , A.E.E. , Espinosa , D.C.R. , Tenório , J.S. , Baltazar , M. , Unfolding the vanadium redox flow batteries: An indeep perspective on its components and current operation challenges . J. Energy Storage , 43 , 103180 , 2021 . 10.1016/j.est.2021.103180 Web of Science®Google Scholar Ng , A. , Nathwani , J. , Paths to Sustainable Energy , IntechOpen , 2010 . Google Scholar Ye , R. , Henkensmeier , D. , Yoon , S.J. , Huang , Z. , Kim , D.K. , Chang , Z. , Kim , S. , Chen , R. , Storage, Redox flow batteries for energy storage: A technology review . J. Electrochem. Energy Convers. Storage , 15 , 010801 , 2018 . 10.1115/1.4037248 Web of Science®Google Scholar Kear , G. , Shah , A.A. , Walsh , F.C. , Development of the all-vanadium redox flow battery for energy storage: A review of technological, financial and policy aspects . Intl. J. Energy Res. , 36 , 1105 , 2012 . 10.1002/er.1863 CASWeb of Science®Google Scholar Arenas , L. , De León , C.P. , Walsh , F. , Engineering aspects of the design, construction and performance of modular redox flow batteries for energy storage . J. Energy Storage , 11 , 119 , 2017 . 10.1016/j.est.2017.02.007 Web of Science®Google Scholar Gundlapalli , R. , Kumar , S. , Jayanti , S. , Stack design considerations for vanadium redox flow battery . INAE Lett. , 3 , 149 , 2018 . 10.1007/s41403-018-0044-1 Google Scholar De León , C.P. , Ferrer , A.F. , García , J.G. , Szánto , D.A. , Walsh , F. , Redox flow cells for energy conversion . J. Power Sources 160 , 716 – 732 , 2006 . 10.1016/j.jpowsour.2006.02.095 CASWeb of Science®Google Scholar Soloveichik , G. , Flow batteries: Current status and trends . Chem. Rev. , 115 , 11533 , 2015 . 10.1021/cr500720t CASPubMedWeb of Science®Google Scholar Tang , A. , Bao , J. , Kazacos , M. , Studies on pressure losses and flow rate optimization in vanadium redox flow battery . J. Power Sources , 248 , 154 , 2014 . 10.1016/j.jpowsour.2013.09.071 CASWeb of Science®Google Scholar Barelli , L. , Bidini , G. , Ottaviano , P.A. , Pelosi , D. , Vanadium redox flow batteries application to electric buses propulsion: Performance analysis of hybrid energy storage system . J. Energy Storage , 24 , 100770 , 2019 . 10.1016/j.est.2019.100770 Web of Science®Google Scholar Couper , A.M. , Pletcher , D. , Walsh , F.C. , Electrode materials for electrosynthesis . Chem. Rev. , 90 , 837 , 1990 . 10.1021/cr00103a010 CASWeb of Science®Google Scholar Wang , W. , Luo , Q. , Li , B. , Wei , X. , Li , L. , Yang , Z. , Recent progress in redox flow battery research and development . Adv. Funct. Mater. , 23 , 970 , 2013 . 10.1002/adfm.201200694 CASWeb of Science®Google Scholar Flox , C. , Skoumal , M. , Garcia , J. , Andreu , T. , Morante , J. , Strategies for enhancing electrochemical activity of carbon-based electrodes for allvanadium redox flow batteries . Appl. Energy , 109 , 344 , 2013 . 10.1016/j.apenergy.2013.02.001 CASWeb of Science®Google Scholar Rivera , F.F. , De León , C.P. , Walsh , F.C. , Nava , J.L. , The reaction environment in a filter-press laboratory reactor: The FM01-LC flow cell . Intl. J. Energy Res. , 161 , 436 , 2015 . CASGoogle Scholar Eifert , L. , Banerjee , R. , Jusys , Z. , Zeis , R. , Characterization of carbon felt electrodes for vanadium redox flow batteries: Impact of treatment methods . J. Electrochem. Soc. , 165 , A2577 , 2018 . 10.1149/2.0531811jes CASWeb of Science®Google Scholar Castañeda , L.F. , Walsh , F.C. , Nava , J.L. , De León , C. , Graphite felt as a versatile electrode material: Properties, reaction environment, performance and applications . Electrochim. Acta , 258 , 1115 , 2017 . 10.1016/j.electacta.2017.11.165 CASWeb of Science®Google Scholar Kazacos , M. , Grossmith , F. , Efficient vanadium redox flow cell . J. Electrochem Soc. , 134 , 2950 , 1987 . 10.1149/1.2100321 Google Scholar Garcia , J. , Bonete , P. , Expósito , E. , Montiel , V. , Aldaz , A. , Maciá , R. , Characterization of a carbon felt electrode: Structural and physical properties . J. Mater. Chem. , 9 , 419 , 1999 . 10.1039/a805823g Google Scholar Liu , H. , Xu , Q. , Yan , C. , Qiao , Y. , Corrosion behavior of a positive graphite electrode in vanadium redox flow battery . Electrochim. Acta , 56 , 8783 , 2011 . 10.1016/j.electacta.2011.07.083 CASWeb of Science®Google Scholar Aberoumand , S. , Woodfield , P. , Shabani , B. , Dao , D.V. , Advances in electrode and electrolyte improvements in vanadium redox flow batteries with a focus on the nanofluidic electrolyte approach . Phys. Reports , 881 , 1 , 2020 . 10.1016/j.physrep.2020.08.001 CASGoogle Scholar Wu , L. , Shen , Y. , Yu , L. , Xi , J. , Qiu , X. Boosting vanadium flow battery performance by nitrogen-doped carbon nanospheres electrocatalyst . Nano Energy , 28 , 19 , 2016 . 10.1016/j.nanoen.2016.08.025 CASWeb of Science®Google Scholar Zhao , C. , Li , Y. , He , Z. , Jiang , Y. , Li , L. , Jiang , F. , Zhou , H. , Zhu , J. , Meng , W. , Wang , L. , KHC0 3 activated carbon microsphere as excellent electrocatalyst for Vo 2+ /Vo 2+ redox couple for vanadium redox flow battery . J. Energy Chem. , 29 , 103 , 2019 . 10.1016/j.jechem.2018.02.006 Web of Science®Google Scholar Mazúr , P. , Mrlik , J. , Pocedic , J. , Vrána , J. , Dundálek , J. , Kosek , J. , Bystron , T. , Effect of graphite felt properties on the long-term durability of negative electrode in vanadium redox flow battery . J. Power Sources , 414 , 354 , 2019 . 10.1016/j.jpowsour.2019.01.019 CASWeb of Science®Google Scholar Aaron , D. , Yeom ,