清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Vanadium Redox Flow Batteries (VRFB)

图书馆学 工程类 医学 材料科学 计算机科学 冶金
作者
Abrar Hussain,Muhammad Tahir Khan,Samad Yaseen,Ata‐ur‐Rehman,Syed Mustansar Abbas
标识
DOI:10.1002/9781119904960.ch6
摘要

Chapter 6 Vanadium Redox Flow Batteries (VRFB) Abrar Hussain, Abrar Hussain Department of Physics, Riphah International University, Islamabad, PakistanSearch for more papers by this authorMuhammad Tahir Khan, Muhammad Tahir Khan Department of Physics, Riphah International University, Islamabad, PakistanSearch for more papers by this authorSamad Yaseen, Samad Yaseen Department of Chemistry, Govt. Graduate College, Asghar Mall, Rawalpindi, PakistanSearch for more papers by this author Ata-ur-Rehman, Ata-ur-Rehman Department of Chemistry, Govt. Graduate College, Asghar Mall, Rawalpindi, PakistanSearch for more papers by this authorSyed Mustansar Abbas, Syed Mustansar Abbas Nanoscience & Technology Department, National Centre for Physics, Islamabad, PakistanSearch for more papers by this author Abrar Hussain, Abrar Hussain Department of Physics, Riphah International University, Islamabad, PakistanSearch for more papers by this authorMuhammad Tahir Khan, Muhammad Tahir Khan Department of Physics, Riphah International University, Islamabad, PakistanSearch for more papers by this authorSamad Yaseen, Samad Yaseen Department of Chemistry, Govt. Graduate College, Asghar Mall, Rawalpindi, PakistanSearch for more papers by this author Ata-ur-Rehman, Ata-ur-Rehman Department of Chemistry, Govt. Graduate College, Asghar Mall, Rawalpindi, PakistanSearch for more papers by this authorSyed Mustansar Abbas, Syed Mustansar Abbas Nanoscience & Technology Department, National Centre for Physics, Islamabad, PakistanSearch for more papers by this author Book Editor(s): Inamuddin, InamuddinSearch for more papers by this authorTariq Altalhi, Tariq AltalhiSearch for more papers by this author First published: 17 April 2024 https://doi.org/10.1002/9781119904960.ch6 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary The world meets energy demands by using fossil fuels and renewable energy resources. The present need of the global world is to work on energy sources that are economical and efficient. The world has now reduced the use of fossil fuels and is shifting toward renewable energy generation. Among these sources, the vanadium redox flow battery (VRFB) technology that has been developed recently is considered a better candidate for efficient storage of energy. The potential application of VRFB in energy storage is due to a change in its oxidation state from bivalent up to pentavalent (V 2+ , V 3+ , V 4+ , V 5+ ). This chapter covers the working principle, the main components of the VRFB system, and a comparison of VRFB with other electrochemical energy storage technologies. The recent developments on VRFB have been briefly explained. Finally, the most crucial learning research fields are discussed, as well as future development suggestions. References Wang , S. , Owusu , K.A. , Mai , L. , Ke , Y. , Zhou , Y. , Hu , P. , Magdassi , S. , Long , Y. , Vanadium dioxide for energy conservation and energy storage applications: Synthesis and performance improvement . Appl. Energy , 211 , 200 , 2018 . 10.1016/j.apenergy.2017.11.039 CASWeb of Science®Google Scholar U.S. Energy Information Administration (EIA) , U.S. Energy Facts Explained , Washington DC, USA , 2019 . Google Scholar International Energy Agency (IEA) . World Energy Outlook 2017 . https://www.iea.org/reports/world-energy-outlook-2017 . Google Scholar International Energy Agency (IEA) . World Energy Outlook 2019 . https://www.iea.org/reports/world-energy-outlook-2019 . Google Scholar Ibrahim , H. , Younès , I. , Perron , A.U. , Energy storage systems—characteristics comparisons . Renew. Sustain. Energy Rev. , 12 , 1221 – 1250 , 2008 . 10.1016/j.rser.2007.01.023 CASWeb of Science®Google Scholar Das , C.K. , Bass , O. , Kothapalli , G. , Mahmoud , T.S. , Habibi , D. , Optimal placement of distributed energy storage systems in distribution networks using artificial bee colony algorithm . Appl. Energy , 232 , 212 , 2018 . 10.1016/j.apenergy.2018.07.100 Web of Science®Google Scholar Messaggi , M. , Canzi , P. , Mereu , R. , Baricci , A. , Inzoli , F. , Casalegno , A. , Zago , M. , Analysis of flow field design on vanadium redox flow battery performance: Development of 3d computational fluid dynamic model and experimental validation . Appl. Energy , 228 , 1057 , 2018 . 10.1016/j.apenergy.2018.06.148 CASWeb of Science®Google Scholar Wei , Z. , Zhao , J. , Ji , D. , Tseng , K. , A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model . Appl. Energy , 204 , 1264 , 2017 . 10.1016/j.apenergy.2017.02.016 CASWeb of Science®Google Scholar Zhang , Y. , Campana , P.E. , Yang , Y. , Stridh , B. , Lundblad , A. , Yan , J. , Energy flexibility from the consumer: Integrating local electricity and heat supplies in a building . Appl. Energy , 223 , 430 , 2018 . 10.1016/j.apenergy.2018.04.041 Google Scholar Lin , G. , Chong , P.Y. , Yarlagadda , V. , Nguyen , T. , Wycisk , R. , Pintauro , P. , Bates , M. , Mukerjee , S. , Tucker , M. , Weber , A. , Advanced hydrogen-bromine flow batteries with improved efficiency, durability and cost . J. Electrochem. Soc. , 163 , A5049 , 2015 . 10.1149/2.0071601jes Web of Science®Google Scholar Ulaganathan , M. , Aravindan , V. , Yan , Q. , Madhavi , S. , Kazacos , M. , Lim , T.M. , Recent advancements in all-vanadium redox flow batteries . Adv. Mater. , 3 , 1500309 , 2016 . 10.1002/admi.201500309 Google Scholar Yang , J.H. , Yang , H.S. , Ra , H.W. , Shim , J. , Jeon , J.-D. , Effect of a surface active agent on performance of zinc/bromine redox flow batteries: Improvement in current efficiency and system stability . J. Power Sources , 275 , 294 , 2015 . 10.1016/j.jpowsour.2014.10.208 CASWeb of Science®Google Scholar Hawthorne , K.L. , Petek , T.J. , Miller , M.A. , Wainright , J.S. , Savinell , R.F. , An investigation into factors affecting the iron plating reaction for an all-iron flow battery . J. Electrochem. Soc. , 162 , A108 , 2014 . 10.1149/2.0591501jes Web of Science®Google Scholar Duduta , M. , Ho , B. , Wood , V.C. , Limthongkul , P. , Brunini , V.E. , Carter , W.C. , Chiang , Y.M. , Semi-solid lithium rechargeable flow battery . Adv. Mater. , 1 , 511 , 2011 . 10.1002/aenm.201100152 CASGoogle Scholar Sum , E. , Kazacos , M. , A study of the V(ii)/V(iii) redox couple for redox flow cell applications . J. Power Sources , 15 , 179 , 1985 . 10.1016/0378-7753(85)80071-9 CASWeb of Science®Google Scholar Tang , A. , Dynamic modelling and simulation of the all-vanadium redox flow battery , PhD thesis, Sydney, Australia : The University of New South Wales , 2013 . Google Scholar Eckroad , S. , Palo Alto , Ca. , Vanadium redox flow batteries: An in-depth analysis . Intl. J. Energy Res. , 39 , 1014836 , 2007 . Google Scholar Vafiadis , H. , Kazacos , M. , Evaluation of membranes for the novel vanadium bromine redox flow cell . J. Membr. Sci. , 279 , 394 , 2006 . 10.1016/j.memsci.2005.12.028 CASWeb of Science®Google Scholar Zhang , C. , Zhao , T. , Xu , Q. , An , L. , Zhao , G. , Effects of operating temperature on the performance of vanadium redox flow batteries . Appl. Energy , 155 , 349 , 2015 . 10.1016/j.apenergy.2015.06.002 CASWeb of Science®Google Scholar Bartolozzi , M. , Development of redox flow batteries . A historical bibliography. J. Power Sources , 27 , 219 , 1989 . 10.1016/0378-7753(89)80037-0 CASWeb of Science®Google Scholar Vinco , J.H. , Domingos , A.E.E. , Espinosa , D.C.R. , Tenório , J.S. , Baltazar , M. , Unfolding the vanadium redox flow batteries: An indeep perspective on its components and current operation challenges . J. Energy Storage , 43 , 103180 , 2021 . 10.1016/j.est.2021.103180 Web of Science®Google Scholar Ng , A. , Nathwani , J. , Paths to Sustainable Energy , IntechOpen , 2010 . Google Scholar Ye , R. , Henkensmeier , D. , Yoon , S.J. , Huang , Z. , Kim , D.K. , Chang , Z. , Kim , S. , Chen , R. , Storage, Redox flow batteries for energy storage: A technology review . J. Electrochem. Energy Convers. Storage , 15 , 010801 , 2018 . 10.1115/1.4037248 Web of Science®Google Scholar Kear , G. , Shah , A.A. , Walsh , F.C. , Development of the all-vanadium redox flow battery for energy storage: A review of technological, financial and policy aspects . Intl. J. Energy Res. , 36 , 1105 , 2012 . 10.1002/er.1863 CASWeb of Science®Google Scholar Arenas , L. , De León , C.P. , Walsh , F. , Engineering aspects of the design, construction and performance of modular redox flow batteries for energy storage . J. Energy Storage , 11 , 119 , 2017 . 10.1016/j.est.2017.02.007 Web of Science®Google Scholar Gundlapalli , R. , Kumar , S. , Jayanti , S. , Stack design considerations for vanadium redox flow battery . INAE Lett. , 3 , 149 , 2018 . 10.1007/s41403-018-0044-1 Google Scholar De León , C.P. , Ferrer , A.F. , García , J.G. , Szánto , D.A. , Walsh , F. , Redox flow cells for energy conversion . J. Power Sources 160 , 716 – 732 , 2006 . 10.1016/j.jpowsour.2006.02.095 CASWeb of Science®Google Scholar Soloveichik , G. , Flow batteries: Current status and trends . Chem. Rev. , 115 , 11533 , 2015 . 10.1021/cr500720t CASPubMedWeb of Science®Google Scholar Tang , A. , Bao , J. , Kazacos , M. , Studies on pressure losses and flow rate optimization in vanadium redox flow battery . J. Power Sources , 248 , 154 , 2014 . 10.1016/j.jpowsour.2013.09.071 CASWeb of Science®Google Scholar Barelli , L. , Bidini , G. , Ottaviano , P.A. , Pelosi , D. , Vanadium redox flow batteries application to electric buses propulsion: Performance analysis of hybrid energy storage system . J. Energy Storage , 24 , 100770 , 2019 . 10.1016/j.est.2019.100770 Web of Science®Google Scholar Couper , A.M. , Pletcher , D. , Walsh , F.C. , Electrode materials for electrosynthesis . Chem. Rev. , 90 , 837 , 1990 . 10.1021/cr00103a010 CASWeb of Science®Google Scholar Wang , W. , Luo , Q. , Li , B. , Wei , X. , Li , L. , Yang , Z. , Recent progress in redox flow battery research and development . Adv. Funct. Mater. , 23 , 970 , 2013 . 10.1002/adfm.201200694 CASWeb of Science®Google Scholar Flox , C. , Skoumal , M. , Garcia , J. , Andreu , T. , Morante , J. , Strategies for enhancing electrochemical activity of carbon-based electrodes for allvanadium redox flow batteries . Appl. Energy , 109 , 344 , 2013 . 10.1016/j.apenergy.2013.02.001 CASWeb of Science®Google Scholar Rivera , F.F. , De León , C.P. , Walsh , F.C. , Nava , J.L. , The reaction environment in a filter-press laboratory reactor: The FM01-LC flow cell . Intl. J. Energy Res. , 161 , 436 , 2015 . CASGoogle Scholar Eifert , L. , Banerjee , R. , Jusys , Z. , Zeis , R. , Characterization of carbon felt electrodes for vanadium redox flow batteries: Impact of treatment methods . J. Electrochem. Soc. , 165 , A2577 , 2018 . 10.1149/2.0531811jes CASWeb of Science®Google Scholar Castañeda , L.F. , Walsh , F.C. , Nava , J.L. , De León , C. , Graphite felt as a versatile electrode material: Properties, reaction environment, performance and applications . Electrochim. Acta , 258 , 1115 , 2017 . 10.1016/j.electacta.2017.11.165 CASWeb of Science®Google Scholar Kazacos , M. , Grossmith , F. , Efficient vanadium redox flow cell . J. Electrochem Soc. , 134 , 2950 , 1987 . 10.1149/1.2100321 Google Scholar Garcia , J. , Bonete , P. , Expósito , E. , Montiel , V. , Aldaz , A. , Maciá , R. , Characterization of a carbon felt electrode: Structural and physical properties . J. Mater. Chem. , 9 , 419 , 1999 . 10.1039/a805823g Google Scholar Liu , H. , Xu , Q. , Yan , C. , Qiao , Y. , Corrosion behavior of a positive graphite electrode in vanadium redox flow battery . Electrochim. Acta , 56 , 8783 , 2011 . 10.1016/j.electacta.2011.07.083 CASWeb of Science®Google Scholar Aberoumand , S. , Woodfield , P. , Shabani , B. , Dao , D.V. , Advances in electrode and electrolyte improvements in vanadium redox flow batteries with a focus on the nanofluidic electrolyte approach . Phys. Reports , 881 , 1 , 2020 . 10.1016/j.physrep.2020.08.001 CASGoogle Scholar Wu , L. , Shen , Y. , Yu , L. , Xi , J. , Qiu , X. Boosting vanadium flow battery performance by nitrogen-doped carbon nanospheres electrocatalyst . Nano Energy , 28 , 19 , 2016 . 10.1016/j.nanoen.2016.08.025 CASWeb of Science®Google Scholar Zhao , C. , Li , Y. , He , Z. , Jiang , Y. , Li , L. , Jiang , F. , Zhou , H. , Zhu , J. , Meng , W. , Wang , L. , KHC0 3 activated carbon microsphere as excellent electrocatalyst for Vo 2+ /Vo 2+ redox couple for vanadium redox flow battery . J. Energy Chem. , 29 , 103 , 2019 . 10.1016/j.jechem.2018.02.006 Web of Science®Google Scholar Mazúr , P. , Mrlik , J. , Pocedic , J. , Vrána , J. , Dundálek , J. , Kosek , J. , Bystron , T. , Effect of graphite felt properties on the long-term durability of negative electrode in vanadium redox flow battery . J. Power Sources , 414 , 354 , 2019 . 10.1016/j.jpowsour.2019.01.019 CASWeb of Science®Google Scholar Aaron , D. , Yeom ,

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
九九完成签到,获得积分10
3秒前
1234567完成签到,获得积分10
30秒前
英姑应助科研通管家采纳,获得10
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
carrot完成签到 ,获得积分10
2分钟前
woxinyouyou完成签到,获得积分0
2分钟前
3分钟前
科研搬运工完成签到,获得积分10
3分钟前
chi完成签到 ,获得积分10
4分钟前
666完成签到 ,获得积分10
4分钟前
heolmes完成签到 ,获得积分10
5分钟前
经纲完成签到 ,获得积分0
5分钟前
xiao完成签到 ,获得积分10
5分钟前
5分钟前
西红柿不吃皮完成签到 ,获得积分10
6分钟前
半岛岛发布了新的文献求助10
6分钟前
jyy应助科研通管家采纳,获得10
6分钟前
和谐的夏岚完成签到 ,获得积分10
6分钟前
负责冰海完成签到 ,获得积分10
6分钟前
7分钟前
7分钟前
传奇3应助喝奶茶睡不着采纳,获得30
7分钟前
HHW完成签到,获得积分10
7分钟前
火箭完成签到,获得积分10
7分钟前
清爽明辉发布了新的文献求助10
8分钟前
Ryoman完成签到,获得积分10
8分钟前
清爽明辉完成签到,获得积分20
8分钟前
烟花应助胖头鱼please采纳,获得10
8分钟前
8分钟前
LQ完成签到 ,获得积分20
8分钟前
8分钟前
川藏客完成签到 ,获得积分10
8分钟前
震动的机器猫完成签到,获得积分10
10分钟前
10分钟前
11分钟前
11分钟前
壮观以松完成签到,获得积分20
11分钟前
music007完成签到,获得积分10
12分钟前
jyy应助科研通管家采纳,获得10
12分钟前
fareless完成签到 ,获得积分10
12分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139615
求助须知:如何正确求助?哪些是违规求助? 2790490
关于积分的说明 7795394
捐赠科研通 2446958
什么是DOI,文献DOI怎么找? 1301526
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176