Lung Tissue Multi-Layer Network Analysis Uncovers the Molecular Heterogeneity of COPD

慢性阻塞性肺病 医学 下调和上调 转录组 队列 趋化因子 计算生物学 生物信息学 免疫学 免疫系统 病理 基因 生物 基因表达 内科学 生物化学
作者
Núria Olvera,Jon Sánchez-Valle,Iker Núñez‐Carpintero,Joselyn Rojas,Guillaume Noell,Sandra Casas-Recasens,Alen Faiz,Philip M. Hansbro,Ángela Guirao,Rosalba Lepore,Davide Cirillo,Àlvar Agustí,Francesca Polverino,Alfonso Valencia,Rosa Faner
出处
期刊:American Journal of Respiratory and Critical Care Medicine [American Thoracic Society]
卷期号:210 (10): 1219-1229 被引量:8
标识
DOI:10.1164/rccm.202303-0500oc
摘要

Background. Chronic Obstructive Pulmonary Disease (COPD) is a heterogeneous condition. We hypothesized that the unbiased integration of different COPD lung omics using a novel multi-layer approach may unravel mechanisms associated with clinical characteristics. Methods. We profiled mRNA, miRNA and methylome in lung tissue samples from 135 former smokers with COPD. For each omic (layer) we built a patient network based on molecular similarity. The three networks were used to build a multi-layer network, and optimization of multiplex-modularity was employed to identify patient communities across the three distinct layers. Uncovered communities were related to clinical features. Results. We identified five patient communities in the multi-layer network which were molecularly distinct and related to clinical characteristics, such as FEV1 and blood eosinophils. Two communities (C#3 and C#4) had both similarly low FEV1 values and emphysema, but were molecularly different: C#3, but not C#4, presented B and T cell signatures and a downregulation of secretory (SCGB1A1/SCGB3A1) and ciliated cells. A machine learning model was set up to discriminate C#3 and C#4 in our cohort, and to validate them in an independent cohort. Finally, using spatial transcriptomics we characterized the small airway differences between C#3 and C#4, identifying an upregulation of T/B cell homing chemokines, and bacterial response genes in C#3. Conclusions. A novel multi-layer network analysis is able to identify clinically relevant COPD patient communities. Patients with similarly low FEV1 and emphysema can have molecularly distinct small airways and immune response patterns, indicating that different endotypes can lead to similar clinical presentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
茜茜完成签到,获得积分10
刚刚
柚子应助芒果柠檬采纳,获得20
刚刚
白糖发布了新的文献求助10
刚刚
王肖完成签到 ,获得积分10
刚刚
道听途说完成签到 ,获得积分10
刚刚
共享精神应助紫薰采纳,获得10
1秒前
云朵0810发布了新的文献求助10
1秒前
从容芸完成签到,获得积分10
1秒前
清茶韵心发布了新的文献求助10
1秒前
1秒前
1秒前
亭曈完成签到,获得积分10
2秒前
慕青应助哇奥采纳,获得10
2秒前
3秒前
旺仔冰激凌完成签到,获得积分10
3秒前
扶瑶可接发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
姜林伟发布了新的文献求助10
4秒前
kjz发布了新的文献求助10
4秒前
4秒前
4秒前
LHW完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
王逗逗发布了新的文献求助10
6秒前
冬瓜熊发布了新的文献求助10
6秒前
一航完成签到,获得积分20
6秒前
万能图书馆应助Layla101采纳,获得10
6秒前
7秒前
小灰发布了新的文献求助200
7秒前
嘻嘻完成签到,获得积分0
7秒前
亭曈发布了新的文献求助10
8秒前
嗯嗯嗯完成签到,获得积分10
8秒前
杰尼龟的鱼完成签到 ,获得积分10
8秒前
生动丑应助风清扬采纳,获得10
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351821
求助须知:如何正确求助?哪些是违规求助? 4484784
关于积分的说明 13960373
捐赠科研通 4384451
什么是DOI,文献DOI怎么找? 2408942
邀请新用户注册赠送积分活动 1401489
关于科研通互助平台的介绍 1375007