An Efficient Image Privacy Preservation Scheme for Smart City Applications Using Compressive Sensing and Multi-Level Encryption

加密 压缩传感 方案(数学) 计算机科学 计算机安全 信息隐私 人工智能 数学 数学分析
作者
Xiaofei He,Lixiang Li,Haipeng Peng,Fenghua Tong
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:1
标识
DOI:10.1109/tits.2024.3389066
摘要

With the rapid advancement of smart cities, the utilization of digital images has become widespread, particularly in services such as urban traffic management and public space security surveillance. However, the acquisition, transmission and sharing of digital images inevitably raise concerns about privacy disclosure. To address this challenge, we propose a lightweight image encryption scheme based on data hiding and compressive sensing (CS). Specifically, during the CS sampling and compression stages, we employ data-hiding techniques to embed information from the confusion matrix and coordinates of sensitive regions into CS ciphertext, ensuring the secure transmission of encryption keys for sensitive regions. Additionally, our solution can provide personalized access control mechanisms based on the permission levels of different authorized users and offer customized image recovery quality according to their specific requirements. This effectively addresses the potential privacy leakage risks associated with cross-departmental image sharing, ensuring the security of data transmission and sharing processes. Under consistent experimental conditions, our proposed solution demonstrates a minimum 1.5% improvement in reconstruction quality compared to existing methods. In the security analysis, we further demonstrate that the proposed scheme provides differential reconstruction quality and high-security strength for staff members with different permissions. We believe the proposed solution can suit many practical applications in smart cities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小C发布了新的文献求助10
刚刚
勤恳青亦发布了新的文献求助10
刚刚
刚刚
1秒前
远方发布了新的文献求助10
1秒前
潇涯应助一一采纳,获得10
1秒前
gnufgg完成签到,获得积分10
1秒前
1秒前
ethan完成签到,获得积分20
1秒前
英姑应助木槿采纳,获得10
2秒前
hh完成签到,获得积分10
2秒前
邓111111完成签到 ,获得积分10
2秒前
秋秋儿发布了新的文献求助10
3秒前
3秒前
3秒前
EWW完成签到,获得积分10
4秒前
善良的雨筠完成签到,获得积分10
4秒前
音吹完成签到,获得积分10
4秒前
CipherSage应助陈住气采纳,获得10
4秒前
5秒前
kelakola完成签到,获得积分10
5秒前
5秒前
斯文败类应助咖褐采纳,获得10
5秒前
hh发布了新的文献求助10
6秒前
科研通AI6应助Albert采纳,获得10
6秒前
wanci应助勤恳青亦采纳,获得10
6秒前
LL发布了新的文献求助10
6秒前
7秒前
笑忘书发布了新的文献求助10
7秒前
王多鱼发布了新的文献求助10
7秒前
HYH完成签到,获得积分10
8秒前
8秒前
8秒前
18863933521发布了新的文献求助10
8秒前
吴彬完成签到,获得积分10
9秒前
霸气的凝竹完成签到,获得积分10
9秒前
10秒前
Sharif318发布了新的文献求助50
10秒前
18781913856完成签到 ,获得积分10
10秒前
热情依白发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468825
求助须知:如何正确求助?哪些是违规求助? 4572157
关于积分的说明 14333943
捐赠科研通 4498964
什么是DOI,文献DOI怎么找? 2464789
邀请新用户注册赠送积分活动 1453376
关于科研通互助平台的介绍 1427939