亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Blood Glucose Levels with Organic Neuromorphic Micro‐Networks

神经形态工程学 人工神经网络 计算机科学 灵活性(工程) 人工胰腺 软件 计算机体系结构 人工智能 领域(数学) 嵌入式系统 糖尿病 医学 统计 数学 1型糖尿病 纯数学 程序设计语言 内分泌学
作者
Ibrahim Kurt,Imke Krauhausen,Simone Spolaor,Yoeri van de Burgt
出处
期刊:Advanced Science [Wiley]
标识
DOI:10.1002/advs.202308261
摘要

Accurate glucose prediction is vital for diabetes management. Artificial intelligence and artificial neural networks (ANNs) are showing promising results for reliable glucose predictions, offering timely warnings for glucose fluctuations. The translation of these software-based ANNs into dedicated computing hardware opens a route toward automated insulin delivery systems ultimately enhancing the quality of life for diabetic patients. ANNs are transforming this field, potentially leading to implantable smart prediction devices and ultimately to a fully artificial pancreas. However, this transition presents several challenges, including the need for specialized, compact, lightweight, and low-power hardware. Organic polymer-based electronics are a promising solution as they have the ability to implement the behavior of neural networks, operate at low voltage, and possess key attributes like flexibility, stretchability, and biocompatibility. Here, the study focuses on implementing software-based neural networks for glucose prediction into hardware systems. How to minimize network requirements, downscale the architecture, and integrate the neural network with electrochemical neuromorphic organic devices, meeting the strict demands of smart implants for in-body computation of glucose prediction is investigated.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
旧月完成签到 ,获得积分10
4秒前
旧月关注了科研通微信公众号
10秒前
科研通AI6应助科研通管家采纳,获得10
47秒前
完美世界应助科研通管家采纳,获得10
47秒前
科研通AI6应助科研通管家采纳,获得10
47秒前
科研通AI6应助科研通管家采纳,获得10
47秒前
完美世界应助科研通管家采纳,获得10
47秒前
科研通AI6应助科研通管家采纳,获得10
47秒前
科研通AI6应助科研通管家采纳,获得10
47秒前
48秒前
53秒前
willlee完成签到 ,获得积分10
54秒前
54秒前
LIJinlin完成签到,获得积分10
55秒前
雪白傲薇完成签到 ,获得积分10
58秒前
LIJinlin发布了新的文献求助10
58秒前
扯扯完成签到,获得积分20
1分钟前
1分钟前
讨厌水煮蛋完成签到,获得积分10
1分钟前
1分钟前
1分钟前
扯扯发布了新的文献求助10
1分钟前
liuliu发布了新的文献求助10
1分钟前
讨厌水煮蛋发布了新的文献求助100
1分钟前
555完成签到,获得积分10
1分钟前
1分钟前
sera发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
老不靠谱发布了新的文献求助10
1分钟前
刘大宝发布了新的文献求助10
2分钟前
缪忆寒完成签到,获得积分10
2分钟前
充电宝应助刘大宝采纳,获得10
2分钟前
lovelife完成签到,获得积分10
2分钟前
sera完成签到 ,获得积分10
2分钟前
刘大宝完成签到,获得积分20
2分钟前
城。完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
yangzai完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772837
求助须知:如何正确求助?哪些是违规求助? 5603302
关于积分的说明 15430141
捐赠科研通 4905627
什么是DOI,文献DOI怎么找? 2639601
邀请新用户注册赠送积分活动 1587507
关于科研通互助平台的介绍 1542432