Automatic detection of obstructive sleep apnea based on speech or snoring sounds: a narrative review

阻塞性睡眠呼吸暂停 语音识别 计算机科学 多导睡眠图 倒谱 心音 医学 Mel倒谱 隐马尔可夫模型 睡眠呼吸暂停 金标准(测试) 人工智能 呼吸暂停 特征提取 心脏病学 内科学 精神科
作者
Shuang Cao,Ivana Rosenzweig,Federico Bilotta,Hong Jiang,Ming Xia
出处
期刊:Journal of Thoracic Disease [AME Publishing Company]
卷期号:16 (4): 2654-2667
标识
DOI:10.21037/jtd-24-310
摘要

Background and Objective: Obstructive sleep apnea (OSA) is a common chronic disorder characterized by repeated breathing pauses during sleep caused by upper airway narrowing or collapse. The gold standard for OSA diagnosis is the polysomnography test, which is time consuming, expensive, and invasive. In recent years, more cost-effective approaches for OSA detection based in predictive value of speech and snoring has emerged. In this paper, we offer a comprehensive summary of current research progress on the applications of speech or snoring sounds for the automatic detection of OSA and discuss the key challenges that need to be overcome for future research into this novel approach. Methods: PubMed, IEEE Xplore, and Web of Science databases were searched with related keywords. Literature published between 1989 and 2022 examining the potential of using speech or snoring sounds for automated OSA detection was reviewed. Key Content and Findings: Speech and snoring sounds contain a large amount of information about OSA, and they have been extensively studied in the automatic screening of OSA. By importing features extracted from speech and snoring sounds into artificial intelligence models, clinicians can automatically screen for OSA. Features such as formant, linear prediction cepstral coefficients, mel-frequency cepstral coefficients, and artificial intelligence algorithms including support vector machines, Gaussian mixture model, and hidden Markov models have been extensively studied for the detection of OSA. Conclusions: Due to the significant advantages of noninvasive, low-cost, and contactless data collection, an automatic approach based on speech or snoring sounds seems to be a promising tool for the detection of OSA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
SJJ应助ml采纳,获得20
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
852应助Felly采纳,获得10
3秒前
xiaorain完成签到,获得积分10
4秒前
5秒前
SciGPT应助清秀的小刺猬采纳,获得10
5秒前
Cedric发布了新的文献求助10
6秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
8秒前
英姑应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
yznfly应助科研通管家采纳,获得20
8秒前
yznfly应助科研通管家采纳,获得20
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
raner发布了新的文献求助30
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得30
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Superabsorbent Polymers 2025 800
Rwandan diaspora online: Social connections and identity narratives 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5805254
求助须知:如何正确求助?哪些是违规求助? 5848462
关于积分的说明 15515697
捐赠科研通 4930591
什么是DOI,文献DOI怎么找? 2654668
邀请新用户注册赠送积分活动 1601464
关于科研通互助平台的介绍 1556460