Design of three-dimensional encryption algorithm for image based on improved 6th-order cellular neural network

加密 计算机科学 图像(数学) 人工神经网络 算法 订单(交换) 细胞神经网络 人工智能 计算机网络 财务 经济
作者
Xiaoming Song,Guodong Li,Ping He
出处
期刊:Physica Scripta [IOP Publishing]
标识
DOI:10.1088/1402-4896/ad3860
摘要

Abstract The chaotic trajectory of the traditional natural chaotic system and the single chaotic system is relatively simple, and the keyspace is small, resulting in low security, low complexity, and poor resistance to attacks based on traditional chaotic design encryption algorithms. This article first constructed a 6th-order cellular neural network hyperchaotic system based on the theory of a 6th-order cellular neural network. Then the Chaotic Sequence Enhancer (CSE) is constructed by using infinite folding mapping. We use CSE to improve our cellular neural network. Compared with the old system, the new system has a larger Lyapunov exponent, higher PE complexity, and 0-1 test results. Then based on the new chaotic system, a three-dimensional encryption algorithm was designed. The algorithm rearranges the pixels of the image into cubes and performs scrambling and diffusion operations based on the cubes. While making the encryption effect better, the information entropy of the ciphertext image is also above 7.99, and the correlation between adjacent pixels is less than 0.1. At the same time, the encryption algorithm can better resist various corrosion attacks, and the original image can still be better decrypted even when the ciphertext image has received a 25% loss. The result of the NPCR and UACI test is close to the expected values of 99.61% and 33.46%. The ciphertext image produced by the algorithm can pass the NIST SP800-22 statistical tests. The results of various tests and experiments show that our proposed encryption algorithm has high initial value sensitivity, resistance to differential attacks, and resistance to cropping attacks, and has good application prospects in the field of image security.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NNN发布了新的文献求助10
刚刚
大个应助Uki采纳,获得10
刚刚
爱吃蜜桃的猴子完成签到,获得积分10
刚刚
galaxy完成签到 ,获得积分10
刚刚
飘逸成威完成签到,获得积分10
1秒前
景XN发布了新的文献求助10
1秒前
NorthWang发布了新的文献求助10
1秒前
1秒前
房澜发布了新的文献求助10
2秒前
淡定的彩虹完成签到,获得积分10
2秒前
很傻的狗完成签到,获得积分10
2秒前
3秒前
ztt完成签到,获得积分10
3秒前
无奈的小虾米完成签到,获得积分10
4秒前
Janusfaces完成签到,获得积分10
4秒前
4秒前
科研通AI5应助NNN采纳,获得10
4秒前
戴好头盔搞科研完成签到,获得积分10
4秒前
YYBAS发布了新的文献求助10
5秒前
5秒前
LLL完成签到,获得积分10
5秒前
6秒前
ztt发布了新的文献求助10
6秒前
6秒前
充电宝应助幸运的羔羊采纳,获得10
7秒前
7秒前
cathy完成签到 ,获得积分10
7秒前
7秒前
7秒前
9秒前
9秒前
顾矜应助缥缈的越泽采纳,获得10
10秒前
10秒前
王贺帅发布了新的文献求助10
10秒前
10秒前
lyh发布了新的文献求助10
10秒前
kira发布了新的文献求助10
11秒前
11秒前
小烟花完成签到,获得积分10
11秒前
12秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3731302
求助须知:如何正确求助?哪些是违规求助? 3275712
关于积分的说明 9993151
捐赠科研通 2991222
什么是DOI,文献DOI怎么找? 1641445
邀请新用户注册赠送积分活动 779821
科研通“疑难数据库(出版商)”最低求助积分说明 748365