Prediction of Production-Inflow Profile of a Well Producing Single-Phase Flow of Slightly Compressible Fluid from Multilayer Systems by Temperature and/or Pressure Transient Data

流入 瞬态(计算机编程) 机械 瞬变流 流量(数学) 压缩性 材料科学 单相 石油工程 可压缩流 相(物质) 生产(经济) 地质学 环境科学 计算机科学 物理 地貌学 工程类 电气工程 量子力学 浪涌 经济 宏观经济学 操作系统
作者
Cihan Alan,Murat Çınar,Mustafa Önür
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:29 (06): 3063-3090 被引量:1
标识
DOI:10.2118/214384-pa
摘要

Summary This study focuses on the prediction of the production-inflow profile of a well producing a single-phase flow of slightly compressible fluid (water or oil flow) in a multilayered system using the layer permeability and skin values estimated by history matching spatial and temporal temperature and/or pressure data sets along the completion interval. Such data may be acquired by wireline formation testing, production-logging-tool (PLT), or distributed temperature sensing (DTS) fiber-optic cables. We use an in-house thermal, transient coupled reservoir/wellbore simulator developed during this study. It solves transient mass, momentum, and energy conservation equations simultaneously for both reservoir and wellbore. The effects of the Joule-Thomson (J-T), adiabatic expansion, conduction, and convection are all included for predicting the flow profiles across the wellbore. The results from our in-house simulator are verified with the results from a commercial simulator for the single-phase fluid flow of a vertical well producing geothermal brine and oil in a two-zone multilayer system. We also compare the results from our rigorous transient coupled wellbore/reservoir model with the results from a model assuming steady-state thermal wellbore model used in the previous studies. We find that the steady-state thermal wellbore model used in the previous studies that ignore accumulation terms in mass, momentum, and thermal energy balances is a reasonably accurate model for predicting wellbore pressures and temperatures when it is coupled with a nonisothermal reservoir model for slightly compressible fluid because the transient effect in the wellbore is less important with the slightly compressible fluid. We investigate the nonlinear parameter estimation problem based on the use of single or multiple observed temperature and/or pressure (if available) profiles recorded spatially inside the wellbore and at the sandface. The purpose is to identify if the wellbore or sandface data profiles are more useful to accurately estimate the permeability and skin information and predict a production-inflow profile of the well depending on the representation of an actual multilayer system by a reduced-layered or fine-layered model. We show that using an upscaled-layered model (e.g., representing each heterogeneous layer with a lumped single layer with uniform permeability and skin) provides estimates that are more toward the thickness-average permeability and skin factors of the layers and may not provide a good prediction of the well’s production-inflow profile. We show that including the sandface temperature data in regression worsens, while the use of wellbore temperature data sets improves the quality of parameter estimation if an upscaled multilayered model is used. We also show that regressing on multiple temperature profiles, preferably at the sandface, alone could be used to predict the production-inflow profile accurately if a “fine” multilayered heterogeneous model is used. We also investigate if including or excluding the temperature and/or pressure measurements at the nonperforated sections along the completion interval could help enhance the parameter estimation problem. The results show that when multiple profiles of temperatures including the data at nonperforated zones at different production rates are regressed, reliable estimates of the individual layer properties that predict the production-inflow profile accurately can be obtained, though layer permeability and skin factors may often exhibit wide 95% confidence intervals and high correlations among them. Adding sandface or wellbore pressure data, if available, into observed data sets in history matching always improves the quality of parameter estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助RUI采纳,获得10
刚刚
1秒前
科目三应助xxjbuaa采纳,获得20
1秒前
Rena发布了新的文献求助10
2秒前
时光完成签到,获得积分10
2秒前
悲凉的小馒头完成签到,获得积分10
3秒前
3秒前
3秒前
钰钰发布了新的文献求助10
4秒前
qingmao完成签到,获得积分10
4秒前
绝绝紫完成签到 ,获得积分10
6秒前
6秒前
KaK发布了新的文献求助30
6秒前
希望天下0贩的0应助泡泡采纳,获得10
6秒前
7秒前
龙1完成签到,获得积分10
7秒前
温柔的蛋挞完成签到,获得积分10
7秒前
8秒前
珈小羽完成签到,获得积分10
9秒前
9秒前
lgs发布了新的文献求助10
9秒前
Hi发布了新的文献求助10
10秒前
11秒前
Maston应助ccm采纳,获得10
11秒前
浮游应助吾昕吾芮采纳,获得10
12秒前
Waney完成签到,获得积分10
12秒前
蜗牛完成签到,获得积分10
13秒前
13秒前
希望天下0贩的0应助HWY采纳,获得10
14秒前
Gu发布了新的文献求助10
14秒前
今后应助荣乐采纳,获得10
15秒前
chunfengfusu给iamzhangly30hyit的求助进行了留言
15秒前
炙热晓露发布了新的文献求助10
16秒前
Maston应助ccm采纳,获得10
16秒前
16秒前
lgs完成签到,获得积分10
17秒前
17秒前
淡然的青发布了新的文献求助10
18秒前
18秒前
CipherSage应助秋秋采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5191959
求助须知:如何正确求助?哪些是违规求助? 4375052
关于积分的说明 13623481
捐赠科研通 4229203
什么是DOI,文献DOI怎么找? 2319726
邀请新用户注册赠送积分活动 1318311
关于科研通互助平台的介绍 1268378