Data-Driven Parallel Adaptive Control for Magnetic Helical Microrobots With Derivative Structure in Uncertain Environments

衍生工具(金融) 自适应控制 控制(管理) 计算机科学 人工智能 业务 财务
作者
Huaping Wang,Shihao Zhong,Zhiqiang Zheng,Qing Shi,Tao Sun,Qiang Huang,Toshio Fukuda
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (7): 4139-4150 被引量:4
标识
DOI:10.1109/tsmc.2024.3374071
摘要

Micron-range untethered, magnetic helical robots have great potential for biomedical applications due to their desirable performance with high flexibility and accuracy in unstructured and confined environments. However, at the microscale, time-varying uncertain disturbances in the environment and electromagnetic system greatly hinder helical microrobot tracking control performance. When a microrobot is replaced or even a derivative version with a slight helical body structure change is used for different tasks, the performance of the original control scheme remarkably decreases or even becomes ineffective. Here, we propose a data-driven optimal integrated controller (D 2 -OIC) that realizes precise tracking and transfer control among a series of helical microrobots with derived structures in different situations. The control approach has a parallel structure with nonlinear feedforward and linear feedback controllers. The nonlinear feedforward controller inversely maps the relationship between the electromagnetic field state and the helical microrobot motion state, allowing the helical microrobot to quickly approach the desired motion state. The linear feedback controller effectively adjusts the controller parameters using the virtual reference feedback tuning (VRFT) method, thus eliminating any residual motion errors arising from nonlinear control. By retraining on newly acquired and collected cumulative data with assigned weights, the nonlinear feedforward controller is updated to achieve transfer control among various helical microrobot types. In the experiment, two helical microrobot types performed arbitrary path tracking and obstacle avoidance tasks with tracking errors consistently less than 4% of the microrobot body length, demonstrating the feasibility of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
olivia发布了新的文献求助10
1秒前
yiryir完成签到 ,获得积分10
3秒前
虚幻代桃发布了新的文献求助10
3秒前
Lucas应助5L采纳,获得10
6秒前
7秒前
Joker完成签到,获得积分10
12秒前
情怀应助tanglulu采纳,获得10
12秒前
12秒前
万能图书馆应助阿萨德采纳,获得10
16秒前
重要板凳完成签到 ,获得积分10
17秒前
19秒前
迷路逍遥完成签到,获得积分10
19秒前
走走完成签到,获得积分10
21秒前
科目三应助科研通管家采纳,获得10
21秒前
ding应助科研通管家采纳,获得10
21秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
FashionBoy应助科研通管家采纳,获得10
22秒前
赘婿应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
24秒前
完美世界应助qyliu采纳,获得10
25秒前
26秒前
笑一笑完成签到,获得积分10
28秒前
走走发布了新的文献求助10
29秒前
31秒前
羊六一发布了新的文献求助10
33秒前
35秒前
酰胺back关注了科研通微信公众号
35秒前
不吃草莓味完成签到 ,获得积分10
37秒前
万能图书馆应助fengyi2999采纳,获得10
40秒前
机智惜儿发布了新的文献求助10
40秒前
45秒前
46秒前
47秒前
47秒前
49秒前
DJ国完成签到,获得积分10
50秒前
酰胺back发布了新的文献求助30
51秒前
gebiheishuini发布了新的文献求助10
51秒前
张忠泽发布了新的文献求助10
52秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343244
求助须知:如何正确求助?哪些是违规求助? 2970337
关于积分的说明 8643473
捐赠科研通 2650290
什么是DOI,文献DOI怎么找? 1451220
科研通“疑难数据库(出版商)”最低求助积分说明 672118
邀请新用户注册赠送积分活动 661447