Digital-Twin-Based Deep Reinforcement Learning Approach for Adaptive Traffic Signal Control

计算机科学 强化学习 自适应控制 人工智能 控制(管理)
作者
H. Kamal,Wendy Yánez-Pazmiño,Sara Hassan,Dalia Sobhy
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (12): 21946-21953 被引量:2
标识
DOI:10.1109/jiot.2024.3377600
摘要

Urban vehicle emissions are one of the main contributors to air pollution since most vehicles still rely on fossil fuels, despite the growing popularity of alternative options such as hybrids and electric cars. Recently, Artificial Intelligence (AI) and automation-based controllers have gained attention for their potential use in adaptive traffic signal control. Many studies have been conducted on the application of Deep Reinforcement Learning (DRL) models to reduce travel time in adaptive traffic signal control. However, limited research has been done on adapting traffic signal control to reduce CO2 emissions and fuel consumption in urban vehicles. As such, this work proposes a digital-twin-based adaptive traffic signal control approach that relies on a digital twin of urban traffic network and uses the DRL Multi-Agent Deep Deterministic Policy Gradient (MADDPG) to optimise for reduced fuel consumption and CO2 emission. The system is designed to simulate different traffic scenarios and control strategies, enabling for adaptation in traffic signal adjustments. To assess the effectiveness and applicability of the proposed approach, a quantitative simulation is performed using synthetic and real-world traffic datasets from a multi-intersection network in a neighbourhood in Amman, Jordan, during peak hours. The findings suggest that the DRL approach based on digital twins on synthetic networks can reduce CO2 emissions and fuel consumption even when using a basic reward function based on stopped vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
酷波er应助妮妮采纳,获得10
5秒前
5秒前
大气亦巧完成签到,获得积分10
6秒前
汤汤杨杨完成签到,获得积分10
8秒前
汉堡包应助tutu采纳,获得10
8秒前
年轻板凳发布了新的文献求助10
9秒前
demo1发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
专注大门发布了新的文献求助20
11秒前
埋头苦干科研完成签到,获得积分10
12秒前
SciGPT应助y13333采纳,获得10
12秒前
淡然子轩完成签到,获得积分10
12秒前
Sebastian完成签到,获得积分10
13秒前
哈哈里完成签到 ,获得积分10
13秒前
狸花小喵完成签到,获得积分10
15秒前
16秒前
1111发布了新的文献求助10
17秒前
17秒前
18秒前
yaya发布了新的文献求助10
20秒前
21秒前
21秒前
21秒前
hao发布了新的文献求助10
21秒前
AnasYusuf发布了新的文献求助10
24秒前
26秒前
勤恳的德地完成签到,获得积分10
26秒前
丫丫发布了新的文献求助10
27秒前
上官若男应助lzz采纳,获得10
28秒前
Dreamer完成签到,获得积分10
29秒前
顾矜应助坚强丹雪采纳,获得10
31秒前
烂漫的静枫完成签到,获得积分10
31秒前
AnasYusuf完成签到,获得积分10
34秒前
深情安青应助CC采纳,获得10
35秒前
ying完成签到,获得积分10
36秒前
39秒前
njufeng完成签到,获得积分10
39秒前
39秒前
烟花应助奋斗的画笔采纳,获得30
42秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961020
求助须知:如何正确求助?哪些是违规求助? 3507251
关于积分的说明 11134825
捐赠科研通 3239661
什么是DOI,文献DOI怎么找? 1790305
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150