Digital-Twin-Based Deep Reinforcement Learning Approach for Adaptive Traffic Signal Control

计算机科学 强化学习 自适应控制 人工智能 控制(管理)
作者
H. Kamal,Wendy Yánez-Pazmiño,Sara Hassan,Dalia Sobhy
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (12): 21946-21953 被引量:2
标识
DOI:10.1109/jiot.2024.3377600
摘要

Urban vehicle emissions are one of the main contributors to air pollution since most vehicles still rely on fossil fuels, despite the growing popularity of alternative options such as hybrids and electric cars. Recently, Artificial Intelligence (AI) and automation-based controllers have gained attention for their potential use in adaptive traffic signal control. Many studies have been conducted on the application of Deep Reinforcement Learning (DRL) models to reduce travel time in adaptive traffic signal control. However, limited research has been done on adapting traffic signal control to reduce CO2 emissions and fuel consumption in urban vehicles. As such, this work proposes a digital-twin-based adaptive traffic signal control approach that relies on a digital twin of urban traffic network and uses the DRL Multi-Agent Deep Deterministic Policy Gradient (MADDPG) to optimise for reduced fuel consumption and CO2 emission. The system is designed to simulate different traffic scenarios and control strategies, enabling for adaptation in traffic signal adjustments. To assess the effectiveness and applicability of the proposed approach, a quantitative simulation is performed using synthetic and real-world traffic datasets from a multi-intersection network in a neighbourhood in Amman, Jordan, during peak hours. The findings suggest that the DRL approach based on digital twins on synthetic networks can reduce CO2 emissions and fuel consumption even when using a basic reward function based on stopped vehicles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孟辰凡发布了新的文献求助10
刚刚
my完成签到,获得积分10
2秒前
豆豆哥发布了新的文献求助10
2秒前
悦耳白山完成签到,获得积分20
2秒前
张作雅发布了新的文献求助10
2秒前
3秒前
张婷关注了科研通微信公众号
4秒前
www完成签到,获得积分10
4秒前
青年才俊发布了新的文献求助20
4秒前
0713完成签到,获得积分10
5秒前
yulk发布了新的文献求助10
5秒前
无限安蕾完成签到,获得积分10
6秒前
8秒前
9秒前
852应助shen采纳,获得10
10秒前
Wenshan完成签到,获得积分20
11秒前
yulk完成签到,获得积分10
12秒前
ddd发布了新的文献求助10
12秒前
13秒前
淀粉肠完成签到 ,获得积分10
13秒前
开放草莓发布了新的文献求助10
13秒前
leeshho完成签到,获得积分10
14秒前
15秒前
15秒前
Akim应助胡舒阳采纳,获得10
17秒前
大个应助小谢同学采纳,获得10
17秒前
18秒前
天真的人英完成签到 ,获得积分10
18秒前
19秒前
19秒前
喜欢看神仙打架完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
怕黑向秋发布了新的文献求助10
20秒前
21秒前
zhuzhu完成签到,获得积分10
24秒前
雪白的稀发布了新的文献求助10
24秒前
科研通AI6.1应助Wenshan采纳,获得10
25秒前
曲书文完成签到,获得积分10
25秒前
25秒前
打打应助顶级科学家采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737113
求助须知:如何正确求助?哪些是违规求助? 5371030
关于积分的说明 15334920
捐赠科研通 4880851
什么是DOI,文献DOI怎么找? 2623064
邀请新用户注册赠送积分活动 1571894
关于科研通互助平台的介绍 1528752