亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Digital-Twin-Based Deep Reinforcement Learning Approach for Adaptive Traffic Signal Control

计算机科学 强化学习 自适应控制 人工智能 控制(管理)
作者
H. Kamal,Wendy Yánez-Pazmiño,Sara Hassan,Dalia Sobhy
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (12): 21946-21953 被引量:2
标识
DOI:10.1109/jiot.2024.3377600
摘要

Urban vehicle emissions are one of the main contributors to air pollution since most vehicles still rely on fossil fuels, despite the growing popularity of alternative options such as hybrids and electric cars. Recently, Artificial Intelligence (AI) and automation-based controllers have gained attention for their potential use in adaptive traffic signal control. Many studies have been conducted on the application of Deep Reinforcement Learning (DRL) models to reduce travel time in adaptive traffic signal control. However, limited research has been done on adapting traffic signal control to reduce CO2 emissions and fuel consumption in urban vehicles. As such, this work proposes a digital-twin-based adaptive traffic signal control approach that relies on a digital twin of urban traffic network and uses the DRL Multi-Agent Deep Deterministic Policy Gradient (MADDPG) to optimise for reduced fuel consumption and CO2 emission. The system is designed to simulate different traffic scenarios and control strategies, enabling for adaptation in traffic signal adjustments. To assess the effectiveness and applicability of the proposed approach, a quantitative simulation is performed using synthetic and real-world traffic datasets from a multi-intersection network in a neighbourhood in Amman, Jordan, during peak hours. The findings suggest that the DRL approach based on digital twins on synthetic networks can reduce CO2 emissions and fuel consumption even when using a basic reward function based on stopped vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助Aline采纳,获得10
2秒前
3秒前
欢喜怀绿发布了新的文献求助10
6秒前
吴彦祖发布了新的文献求助10
6秒前
8秒前
歪踢踢关注了科研通微信公众号
9秒前
12秒前
全鑫完成签到,获得积分10
13秒前
Singularity应助刘机智采纳,获得10
13秒前
西蓝花香菜完成签到 ,获得积分10
15秒前
15秒前
柳叶刀完成签到,获得积分10
15秒前
kardeem完成签到,获得积分10
17秒前
嗯哼应助全鑫采纳,获得10
18秒前
Sci工作者完成签到,获得积分20
18秒前
候月发布了新的文献求助30
18秒前
Sci工作者发布了新的文献求助10
21秒前
奶味蓝完成签到,获得积分10
22秒前
牛八先生完成签到,获得积分10
24秒前
25秒前
zhaozhiyun完成签到,获得积分10
25秒前
27秒前
30秒前
无花果应助科研采纳,获得20
31秒前
wenlong完成签到 ,获得积分10
34秒前
十四吉完成签到 ,获得积分10
34秒前
小冯完成签到 ,获得积分10
36秒前
38秒前
abiorz完成签到,获得积分10
39秒前
窗外是蔚蓝色完成签到,获得积分10
39秒前
高小羊发布了新的文献求助10
40秒前
传奇3应助英俊的雁易采纳,获得10
40秒前
星辰大海应助fat采纳,获得10
42秒前
42秒前
受伤雁荷发布了新的文献求助10
44秒前
47秒前
47秒前
48秒前
李爱国应助小野采纳,获得10
51秒前
柳叶刀发布了新的文献求助30
52秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234488
求助须知:如何正确求助?哪些是违规求助? 2880883
关于积分的说明 8217231
捐赠科研通 2548429
什么是DOI,文献DOI怎么找? 1377761
科研通“疑难数据库(出版商)”最低求助积分说明 647999
邀请新用户注册赠送积分活动 623314