Digital-Twin-Based Deep Reinforcement Learning Approach for Adaptive Traffic Signal Control

计算机科学 强化学习 自适应控制 人工智能 控制(管理)
作者
H. Kamal,Wendy Yánez-Pazmiño,Sara Hassan,Dalia Sobhy
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (12): 21946-21953 被引量:2
标识
DOI:10.1109/jiot.2024.3377600
摘要

Urban vehicle emissions are one of the main contributors to air pollution since most vehicles still rely on fossil fuels, despite the growing popularity of alternative options such as hybrids and electric cars. Recently, Artificial Intelligence (AI) and automation-based controllers have gained attention for their potential use in adaptive traffic signal control. Many studies have been conducted on the application of Deep Reinforcement Learning (DRL) models to reduce travel time in adaptive traffic signal control. However, limited research has been done on adapting traffic signal control to reduce CO2 emissions and fuel consumption in urban vehicles. As such, this work proposes a digital-twin-based adaptive traffic signal control approach that relies on a digital twin of urban traffic network and uses the DRL Multi-Agent Deep Deterministic Policy Gradient (MADDPG) to optimise for reduced fuel consumption and CO2 emission. The system is designed to simulate different traffic scenarios and control strategies, enabling for adaptation in traffic signal adjustments. To assess the effectiveness and applicability of the proposed approach, a quantitative simulation is performed using synthetic and real-world traffic datasets from a multi-intersection network in a neighbourhood in Amman, Jordan, during peak hours. The findings suggest that the DRL approach based on digital twins on synthetic networks can reduce CO2 emissions and fuel consumption even when using a basic reward function based on stopped vehicles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Mr.H完成签到 ,获得积分10
1秒前
lcs发布了新的文献求助10
1秒前
1秒前
王小胖完成签到,获得积分20
2秒前
CScs25完成签到 ,获得积分10
2秒前
2秒前
小李发布了新的文献求助10
2秒前
jingmishensi发布了新的文献求助10
3秒前
科研通AI6应助大气怜烟采纳,获得10
3秒前
3秒前
小乐儿~完成签到,获得积分10
3秒前
3秒前
灵巧鑫发布了新的文献求助10
4秒前
zzr123发布了新的文献求助10
4秒前
4秒前
4秒前
曦梦源完成签到,获得积分10
4秒前
共享精神应助飞快的代天采纳,获得10
5秒前
白华苍松发布了新的文献求助10
5秒前
Hyc28441711发布了新的文献求助10
5秒前
一问三不知先生完成签到,获得积分10
5秒前
春风沂水发布了新的文献求助40
6秒前
云端梦境发布了新的文献求助10
6秒前
7秒前
7秒前
奇怪的茶叶菌完成签到,获得积分10
7秒前
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
Owen应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587388
求助须知:如何正确求助?哪些是违规求助? 4670503
关于积分的说明 14783142
捐赠科研通 4622601
什么是DOI,文献DOI怎么找? 2531265
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066