Digital-Twin-Based Deep Reinforcement Learning Approach for Adaptive Traffic Signal Control

计算机科学 强化学习 自适应控制 人工智能 控制(管理)
作者
H. Kamal,Wendy Yánez-Pazmiño,Sara Hassan,Dalia Sobhy
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (12): 21946-21953 被引量:2
标识
DOI:10.1109/jiot.2024.3377600
摘要

Urban vehicle emissions are one of the main contributors to air pollution since most vehicles still rely on fossil fuels, despite the growing popularity of alternative options such as hybrids and electric cars. Recently, Artificial Intelligence (AI) and automation-based controllers have gained attention for their potential use in adaptive traffic signal control. Many studies have been conducted on the application of Deep Reinforcement Learning (DRL) models to reduce travel time in adaptive traffic signal control. However, limited research has been done on adapting traffic signal control to reduce CO2 emissions and fuel consumption in urban vehicles. As such, this work proposes a digital-twin-based adaptive traffic signal control approach that relies on a digital twin of urban traffic network and uses the DRL Multi-Agent Deep Deterministic Policy Gradient (MADDPG) to optimise for reduced fuel consumption and CO2 emission. The system is designed to simulate different traffic scenarios and control strategies, enabling for adaptation in traffic signal adjustments. To assess the effectiveness and applicability of the proposed approach, a quantitative simulation is performed using synthetic and real-world traffic datasets from a multi-intersection network in a neighbourhood in Amman, Jordan, during peak hours. The findings suggest that the DRL approach based on digital twins on synthetic networks can reduce CO2 emissions and fuel consumption even when using a basic reward function based on stopped vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
moon完成签到,获得积分10
1秒前
1秒前
拼搏草莓发布了新的文献求助10
1秒前
李禾和发布了新的文献求助30
1秒前
1秒前
虚心的静枫完成签到,获得积分10
2秒前
顺势而为发布了新的文献求助10
2秒前
CJ发布了新的文献求助10
2秒前
kakiyu发布了新的文献求助20
3秒前
小杨完成签到 ,获得积分10
3秒前
4秒前
上官若男应助yy采纳,获得10
4秒前
冷酷云朵完成签到,获得积分10
5秒前
文承龙发布了新的文献求助10
5秒前
5秒前
小常完成签到,获得积分10
5秒前
务实蜗牛关注了科研通微信公众号
5秒前
地球发布了新的文献求助10
6秒前
薛之谦的猫应助兴奋的松采纳,获得10
6秒前
朴素代芹完成签到 ,获得积分10
7秒前
7秒前
彭于晏应助旺旺采纳,获得10
7秒前
十字勋章发布了新的文献求助10
8秒前
ProfYang发布了新的文献求助10
8秒前
天亮了完成签到,获得积分10
8秒前
9秒前
完美傀斗完成签到,获得积分10
10秒前
10秒前
伊雪儿发布了新的文献求助10
10秒前
请叫我盒子完成签到,获得积分10
10秒前
k7g16Zoc完成签到,获得积分10
10秒前
WYH完成签到,获得积分20
12秒前
缓慢的衫发布了新的文献求助10
12秒前
12秒前
12秒前
sh131完成签到,获得积分10
13秒前
CodeCraft应助wqwweqwe采纳,获得10
13秒前
杜志洪发布了新的文献求助30
13秒前
打打应助zkkkkk采纳,获得10
13秒前
嘻嘻完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352218
求助须知:如何正确求助?哪些是违规求助? 4485082
关于积分的说明 13961728
捐赠科研通 4384899
什么是DOI,文献DOI怎么找? 2409213
邀请新用户注册赠送积分活动 1401676
关于科研通互助平台的介绍 1375225