Digital-Twin-Based Deep Reinforcement Learning Approach for Adaptive Traffic Signal Control

计算机科学 强化学习 自适应控制 人工智能 控制(管理)
作者
H. Kamal,Wendy Yánez-Pazmiño,Sara Hassan,Dalia Sobhy
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (12): 21946-21953 被引量:2
标识
DOI:10.1109/jiot.2024.3377600
摘要

Urban vehicle emissions are one of the main contributors to air pollution since most vehicles still rely on fossil fuels, despite the growing popularity of alternative options such as hybrids and electric cars. Recently, Artificial Intelligence (AI) and automation-based controllers have gained attention for their potential use in adaptive traffic signal control. Many studies have been conducted on the application of Deep Reinforcement Learning (DRL) models to reduce travel time in adaptive traffic signal control. However, limited research has been done on adapting traffic signal control to reduce CO2 emissions and fuel consumption in urban vehicles. As such, this work proposes a digital-twin-based adaptive traffic signal control approach that relies on a digital twin of urban traffic network and uses the DRL Multi-Agent Deep Deterministic Policy Gradient (MADDPG) to optimise for reduced fuel consumption and CO2 emission. The system is designed to simulate different traffic scenarios and control strategies, enabling for adaptation in traffic signal adjustments. To assess the effectiveness and applicability of the proposed approach, a quantitative simulation is performed using synthetic and real-world traffic datasets from a multi-intersection network in a neighbourhood in Amman, Jordan, during peak hours. The findings suggest that the DRL approach based on digital twins on synthetic networks can reduce CO2 emissions and fuel consumption even when using a basic reward function based on stopped vehicles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
包妹发布了新的文献求助10
刚刚
1秒前
zl12应助大气摩托采纳,获得10
1秒前
2秒前
oVUVo完成签到,获得积分10
3秒前
3秒前
帅气诗槐发布了新的文献求助10
4秒前
5秒前
华仔应助guohao采纳,获得10
5秒前
完美世界应助云渺采纳,获得10
5秒前
5秒前
oVUVo发布了新的文献求助10
6秒前
6秒前
Tethys完成签到,获得积分10
7秒前
yun发布了新的文献求助10
7秒前
Limerencia发布了新的文献求助10
8秒前
faustss完成签到,获得积分10
8秒前
所所应助wei采纳,获得10
9秒前
sclai完成签到,获得积分10
9秒前
传说奢华发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
蝶梦完成签到,获得积分10
11秒前
12秒前
lx123发布了新的文献求助10
13秒前
善学以致用应助qaq采纳,获得10
14秒前
saber349完成签到,获得积分10
15秒前
哈哈哈发布了新的文献求助10
15秒前
goodbuhui发布了新的文献求助10
16秒前
17秒前
自信花瓣完成签到,获得积分20
17秒前
极速小鱼给极速小鱼的求助进行了留言
18秒前
句号0发布了新的文献求助10
19秒前
19秒前
慕听完成签到,获得积分10
19秒前
yayaha完成签到,获得积分10
19秒前
酷波er应助无风采纳,获得10
19秒前
风清扬应助王雯雯采纳,获得30
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633272
求助须知:如何正确求助?哪些是违规求助? 4728777
关于积分的说明 14985477
捐赠科研通 4791228
什么是DOI,文献DOI怎么找? 2558809
邀请新用户注册赠送积分活动 1519258
关于科研通互助平台的介绍 1479548