Digital-Twin-Based Deep Reinforcement Learning Approach for Adaptive Traffic Signal Control

计算机科学 强化学习 自适应控制 人工智能 控制(管理)
作者
H. Kamal,Wendy Yánez-Pazmiño,Sara Hassan,Dalia Sobhy
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (12): 21946-21953 被引量:2
标识
DOI:10.1109/jiot.2024.3377600
摘要

Urban vehicle emissions are one of the main contributors to air pollution since most vehicles still rely on fossil fuels, despite the growing popularity of alternative options such as hybrids and electric cars. Recently, Artificial Intelligence (AI) and automation-based controllers have gained attention for their potential use in adaptive traffic signal control. Many studies have been conducted on the application of Deep Reinforcement Learning (DRL) models to reduce travel time in adaptive traffic signal control. However, limited research has been done on adapting traffic signal control to reduce CO2 emissions and fuel consumption in urban vehicles. As such, this work proposes a digital-twin-based adaptive traffic signal control approach that relies on a digital twin of urban traffic network and uses the DRL Multi-Agent Deep Deterministic Policy Gradient (MADDPG) to optimise for reduced fuel consumption and CO2 emission. The system is designed to simulate different traffic scenarios and control strategies, enabling for adaptation in traffic signal adjustments. To assess the effectiveness and applicability of the proposed approach, a quantitative simulation is performed using synthetic and real-world traffic datasets from a multi-intersection network in a neighbourhood in Amman, Jordan, during peak hours. The findings suggest that the DRL approach based on digital twins on synthetic networks can reduce CO2 emissions and fuel consumption even when using a basic reward function based on stopped vehicles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细腻听白发布了新的文献求助30
刚刚
梦在彼岸发布了新的文献求助10
刚刚
sunny完成签到,获得积分10
刚刚
科研通AI2S应助菜叶子采纳,获得10
1秒前
科目三应助lxy采纳,获得10
1秒前
科研通AI6.1应助qq采纳,获得10
1秒前
彭于晏应助晶莹黎采纳,获得10
1秒前
2秒前
2秒前
阿伟发布了新的文献求助10
4秒前
ccalvintan发布了新的文献求助10
4秒前
隐形曼青应助deluohaida采纳,获得10
4秒前
4秒前
4秒前
jitanxiang完成签到,获得积分10
5秒前
helen完成签到,获得积分10
5秒前
5秒前
黎明完成签到,获得积分10
6秒前
杨丽发布了新的文献求助10
6秒前
烟花应助去燕麦采纳,获得10
6秒前
胥渡关注了科研通微信公众号
6秒前
mimi发布了新的文献求助10
8秒前
wisdom完成签到,获得积分10
8秒前
9秒前
英俊的铭应助fan采纳,获得10
9秒前
9秒前
10秒前
cyq发布了新的文献求助10
10秒前
11秒前
11秒前
科研通AI6.1应助海盐咸喵采纳,获得10
11秒前
vixerunt发布了新的文献求助10
11秒前
忆雪完成签到,获得积分10
12秒前
小遇完成签到 ,获得积分10
12秒前
若水发布了新的文献求助10
13秒前
老仙翁发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
mimi完成签到,获得积分10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5745453
求助须知:如何正确求助?哪些是违规求助? 5425688
关于积分的说明 15352955
捐赠科研通 4885450
什么是DOI,文献DOI怎么找? 2626643
邀请新用户注册赠送积分活动 1575298
关于科研通互助平台的介绍 1531988