Methods and datasets on semantic segmentation for Unmanned Aerial Vehicle remote sensing images: A review

分割 遥感 计算机科学 人工智能 航空影像 计算机视觉 航空影像 地理 图像(数学)
作者
Jian Cheng,Changjian Deng,Yanzhou Su,Zeyu An,Qi Wang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:211: 1-34 被引量:5
标识
DOI:10.1016/j.isprsjprs.2024.03.012
摘要

Unmanned Aerial Vehicle (UAV) has seen a dramatic rise in popularity for remote-sensing image acquisition and analysis in recent years. It has brought promising results in low-altitude monitoring tasks that require detailed visual inspections. Semantic segmentation is one of the hot topics in UAV remote sensing image analysis, as its capability to mine contextual semantic information from UAV images is crucial for achieving a fine-grained understanding of scenes. However, in the remote sensing field, recent reviews have not focused on combining "UAV remote sensing" and "semantic segmentation" to summarize the advanced works and future trends. In this study, we focus primarily on describing various recent semantic segmentation methods applied in UAV remote sensing images and summarizing their advantages and limitations. According to the distinction in modeling contextual semantic information, we have categorized and outlined the methods based on graph-based contextual models and deep-learning-based models. Publicly available UAV-based image datasets are also gathered to encourage systematic research on advanced semantic segmentation methods. We provide quantitative results of representative methods on two high-resolution UAV-based image datasets for fair comparisons and discussions in terms of semantic segmentation accuracy and model inference efficiency. Besides, this paper concludes some remaining challenges and future directions in semantic segmentation for UAV remote sensing images and points out that methods based on deep learning will become the future research trend.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
后来给后来的求助进行了留言
1秒前
ad完成签到,获得积分20
1秒前
1秒前
TT2022发布了新的文献求助10
1秒前
存在发布了新的文献求助10
2秒前
千辰发布了新的文献求助10
2秒前
3秒前
脑洞疼应助hhhhh采纳,获得10
6秒前
6秒前
6秒前
6秒前
CodeCraft应助合适无春采纳,获得10
6秒前
6秒前
李大发发布了新的文献求助10
7秒前
7秒前
7秒前
tpzang发布了新的文献求助10
7秒前
XT关注了科研通微信公众号
7秒前
深情安青应助winwing采纳,获得10
8秒前
ad发布了新的文献求助10
8秒前
快乐十八完成签到,获得积分10
9秒前
传奇3应助Yolo采纳,获得10
9秒前
10秒前
舒适念真发布了新的文献求助10
10秒前
10秒前
花卷发布了新的文献求助30
11秒前
斯文谷秋发布了新的文献求助10
11秒前
艾科研发布了新的文献求助10
11秒前
Harssi发布了新的文献求助10
11秒前
丘比特应助evelyn采纳,获得10
13秒前
脑洞疼应助刚刚好采纳,获得10
13秒前
13秒前
14秒前
啊啊啊啊发布了新的文献求助10
14秒前
小杰发布了新的文献求助10
15秒前
15秒前
yuyu一yuyu完成签到,获得积分10
15秒前
科目三应助呵呵呵悦采纳,获得10
16秒前
16秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3075557
求助须知:如何正确求助?哪些是违规求助? 2728621
关于积分的说明 7505455
捐赠科研通 2376840
什么是DOI,文献DOI怎么找? 1260307
科研通“疑难数据库(出版商)”最低求助积分说明 610928
版权声明 597149