Methods and datasets on semantic segmentation for Unmanned Aerial Vehicle remote sensing images: A review

分割 遥感 计算机科学 人工智能 航空影像 计算机视觉 航空影像 地理 图像(数学)
作者
Jian Cheng,Changjian Deng,Yanzhou Su,Zeyu An,Qi Wang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:211: 1-34 被引量:5
标识
DOI:10.1016/j.isprsjprs.2024.03.012
摘要

Unmanned Aerial Vehicle (UAV) has seen a dramatic rise in popularity for remote-sensing image acquisition and analysis in recent years. It has brought promising results in low-altitude monitoring tasks that require detailed visual inspections. Semantic segmentation is one of the hot topics in UAV remote sensing image analysis, as its capability to mine contextual semantic information from UAV images is crucial for achieving a fine-grained understanding of scenes. However, in the remote sensing field, recent reviews have not focused on combining "UAV remote sensing" and "semantic segmentation" to summarize the advanced works and future trends. In this study, we focus primarily on describing various recent semantic segmentation methods applied in UAV remote sensing images and summarizing their advantages and limitations. According to the distinction in modeling contextual semantic information, we have categorized and outlined the methods based on graph-based contextual models and deep-learning-based models. Publicly available UAV-based image datasets are also gathered to encourage systematic research on advanced semantic segmentation methods. We provide quantitative results of representative methods on two high-resolution UAV-based image datasets for fair comparisons and discussions in terms of semantic segmentation accuracy and model inference efficiency. Besides, this paper concludes some remaining challenges and future directions in semantic segmentation for UAV remote sensing images and points out that methods based on deep learning will become the future research trend.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Stefani完成签到,获得积分10
刚刚
matilda完成签到,获得积分10
1秒前
2秒前
完美世界应助七七四十九采纳,获得10
3秒前
wxy完成签到,获得积分10
4秒前
恰到好处完成签到,获得积分20
5秒前
1257发布了新的文献求助10
5秒前
5秒前
wallacetan完成签到,获得积分10
5秒前
liu发布了新的文献求助10
6秒前
FashionBoy应助王迪迪采纳,获得10
6秒前
6秒前
7秒前
7秒前
7秒前
无趣养乐多完成签到 ,获得积分10
7秒前
8秒前
Jinna706完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
77paocai完成签到,获得积分10
9秒前
小二郎应助慕冰蝶采纳,获得10
9秒前
周小鱼完成签到,获得积分10
9秒前
FashionBoy应助闾丘曼安采纳,获得10
10秒前
可乐应助东东采纳,获得10
10秒前
细腻的歌曲完成签到,获得积分10
10秒前
wujinliang发布了新的文献求助10
11秒前
11秒前
小朱完成签到,获得积分10
12秒前
奕初阳发布了新的文献求助10
12秒前
drjj发布了新的文献求助10
12秒前
12秒前
geold发布了新的文献求助10
12秒前
薛定谔完成签到,获得积分10
12秒前
12秒前
hhhhhh完成签到,获得积分10
13秒前
小洁完成签到 ,获得积分10
13秒前
科研狗完成签到 ,获得积分10
13秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147491
求助须知:如何正确求助?哪些是违规求助? 2798710
关于积分的说明 7830633
捐赠科研通 2455455
什么是DOI,文献DOI怎么找? 1306817
科研通“疑难数据库(出版商)”最低求助积分说明 627917
版权声明 601587