Methods and datasets on semantic segmentation for Unmanned Aerial Vehicle remote sensing images: A review

分割 遥感 计算机科学 人工智能 航空影像 计算机视觉 航空影像 地理 图像(数学)
作者
Jian Cheng,Changjian Deng,Yanzhou Su,Zeyu An,Qi Wang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:211: 1-34 被引量:15
标识
DOI:10.1016/j.isprsjprs.2024.03.012
摘要

Unmanned Aerial Vehicle (UAV) has seen a dramatic rise in popularity for remote-sensing image acquisition and analysis in recent years. It has brought promising results in low-altitude monitoring tasks that require detailed visual inspections. Semantic segmentation is one of the hot topics in UAV remote sensing image analysis, as its capability to mine contextual semantic information from UAV images is crucial for achieving a fine-grained understanding of scenes. However, in the remote sensing field, recent reviews have not focused on combining "UAV remote sensing" and "semantic segmentation" to summarize the advanced works and future trends. In this study, we focus primarily on describing various recent semantic segmentation methods applied in UAV remote sensing images and summarizing their advantages and limitations. According to the distinction in modeling contextual semantic information, we have categorized and outlined the methods based on graph-based contextual models and deep-learning-based models. Publicly available UAV-based image datasets are also gathered to encourage systematic research on advanced semantic segmentation methods. We provide quantitative results of representative methods on two high-resolution UAV-based image datasets for fair comparisons and discussions in terms of semantic segmentation accuracy and model inference efficiency. Besides, this paper concludes some remaining challenges and future directions in semantic segmentation for UAV remote sensing images and points out that methods based on deep learning will become the future research trend.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗的盼柳完成签到 ,获得积分10
刚刚
1秒前
Jasper应助handsomecat采纳,获得10
1秒前
1秒前
李雪完成签到,获得积分10
2秒前
2秒前
sv发布了新的文献求助10
4秒前
小田完成签到,获得积分10
4秒前
茶茶完成签到,获得积分20
4秒前
苏兴龙完成签到,获得积分10
4秒前
坚强的亦云-333完成签到,获得积分10
4秒前
Ava应助dan1029采纳,获得10
5秒前
5秒前
5秒前
奶糖最可爱完成签到,获得积分10
6秒前
6秒前
mojomars发布了新的文献求助10
7秒前
幽壑之潜蛟应助茶茶采纳,获得10
7秒前
8秒前
8秒前
8秒前
迅速海云完成签到,获得积分10
8秒前
sjxx发布了新的文献求助10
8秒前
8秒前
乐乐应助Rachel采纳,获得10
9秒前
9秒前
9秒前
天天快乐应助孤独的珩采纳,获得10
10秒前
帅气鹭洋发布了新的文献求助20
10秒前
11秒前
孙悦发布了新的文献求助10
11秒前
知性的绮兰完成签到,获得积分10
11秒前
11秒前
12秒前
Zzzoey完成签到,获得积分10
13秒前
13秒前
13秒前
英姑应助桂魄采纳,获得10
13秒前
13秒前
流北爷发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794