Methods and datasets on semantic segmentation for Unmanned Aerial Vehicle remote sensing images: A review

分割 遥感 计算机科学 人工智能 航空影像 计算机视觉 航空影像 地理 图像(数学)
作者
Jian Cheng,Changjian Deng,Yanzhou Su,Zeyu An,Qi Wang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:211: 1-34 被引量:70
标识
DOI:10.1016/j.isprsjprs.2024.03.012
摘要

Unmanned Aerial Vehicle (UAV) has seen a dramatic rise in popularity for remote-sensing image acquisition and analysis in recent years. It has brought promising results in low-altitude monitoring tasks that require detailed visual inspections. Semantic segmentation is one of the hot topics in UAV remote sensing image analysis, as its capability to mine contextual semantic information from UAV images is crucial for achieving a fine-grained understanding of scenes. However, in the remote sensing field, recent reviews have not focused on combining "UAV remote sensing" and "semantic segmentation" to summarize the advanced works and future trends. In this study, we focus primarily on describing various recent semantic segmentation methods applied in UAV remote sensing images and summarizing their advantages and limitations. According to the distinction in modeling contextual semantic information, we have categorized and outlined the methods based on graph-based contextual models and deep-learning-based models. Publicly available UAV-based image datasets are also gathered to encourage systematic research on advanced semantic segmentation methods. We provide quantitative results of representative methods on two high-resolution UAV-based image datasets for fair comparisons and discussions in terms of semantic segmentation accuracy and model inference efficiency. Besides, this paper concludes some remaining challenges and future directions in semantic segmentation for UAV remote sensing images and points out that methods based on deep learning will become the future research trend.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王者完成签到,获得积分10
1秒前
1秒前
全力以赴先生完成签到,获得积分10
2秒前
复照完成签到,获得积分10
2秒前
OLDBLOW完成签到 ,获得积分10
2秒前
小透明应助xupt唐僧采纳,获得30
3秒前
Alicia完成签到,获得积分10
3秒前
yanmu2010应助钙离子采纳,获得10
3秒前
大帅哲发布了新的文献求助10
3秒前
科研通AI6应助botion采纳,获得10
3秒前
笨笨梦松完成签到,获得积分10
3秒前
cmh发布了新的文献求助10
3秒前
佳佳完成签到,获得积分10
4秒前
蛋黄酥酥完成签到,获得积分10
4秒前
微纳组刘同完成签到,获得积分10
5秒前
科研通AI6应助man采纳,获得10
5秒前
ding应助小小小先生采纳,获得10
5秒前
七里香完成签到 ,获得积分10
5秒前
弹指一挥间完成签到,获得积分10
5秒前
宝铭YUAN完成签到,获得积分10
6秒前
6秒前
玄轩完成签到,获得积分10
6秒前
果果完成签到 ,获得积分10
6秒前
法兰克福人完成签到,获得积分10
6秒前
wh完成签到,获得积分10
6秒前
luyang完成签到,获得积分10
7秒前
听话的萤完成签到,获得积分10
7秒前
Odyssey_Cheung完成签到,获得积分10
7秒前
曾经碧蓉完成签到,获得积分10
7秒前
8秒前
聪慧的向松完成签到,获得积分10
8秒前
西因发布了新的文献求助10
8秒前
小砖块完成签到,获得积分20
8秒前
sunj完成签到,获得积分10
8秒前
食虫蚁完成签到 ,获得积分10
8秒前
追风少侠李二狗完成签到,获得积分10
8秒前
MYFuture完成签到,获得积分10
8秒前
cara完成签到,获得积分10
8秒前
figure完成签到 ,获得积分10
9秒前
天地一沙鸥完成签到 ,获得积分10
9秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585080
求助须知:如何正确求助?哪些是违规求助? 4668887
关于积分的说明 14772970
捐赠科研通 4616734
什么是DOI,文献DOI怎么找? 2530315
邀请新用户注册赠送积分活动 1499116
关于科研通互助平台的介绍 1467641