Methods and datasets on semantic segmentation for Unmanned Aerial Vehicle remote sensing images: A review

分割 遥感 计算机科学 人工智能 航空影像 计算机视觉 航空影像 地理 图像(数学)
作者
Jian Cheng,Changjian Deng,Yanzhou Su,Zeyu An,Qi Wang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:211: 1-34 被引量:28
标识
DOI:10.1016/j.isprsjprs.2024.03.012
摘要

Unmanned Aerial Vehicle (UAV) has seen a dramatic rise in popularity for remote-sensing image acquisition and analysis in recent years. It has brought promising results in low-altitude monitoring tasks that require detailed visual inspections. Semantic segmentation is one of the hot topics in UAV remote sensing image analysis, as its capability to mine contextual semantic information from UAV images is crucial for achieving a fine-grained understanding of scenes. However, in the remote sensing field, recent reviews have not focused on combining "UAV remote sensing" and "semantic segmentation" to summarize the advanced works and future trends. In this study, we focus primarily on describing various recent semantic segmentation methods applied in UAV remote sensing images and summarizing their advantages and limitations. According to the distinction in modeling contextual semantic information, we have categorized and outlined the methods based on graph-based contextual models and deep-learning-based models. Publicly available UAV-based image datasets are also gathered to encourage systematic research on advanced semantic segmentation methods. We provide quantitative results of representative methods on two high-resolution UAV-based image datasets for fair comparisons and discussions in terms of semantic segmentation accuracy and model inference efficiency. Besides, this paper concludes some remaining challenges and future directions in semantic segmentation for UAV remote sensing images and points out that methods based on deep learning will become the future research trend.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tcf完成签到,获得积分10
1秒前
MrSong完成签到,获得积分10
2秒前
豆浆来点蒜泥完成签到,获得积分0
3秒前
5秒前
6秒前
可燃冰完成签到,获得积分10
7秒前
7秒前
黄石完成签到,获得积分10
7秒前
Justtry完成签到,获得积分10
7秒前
Sunshine完成签到 ,获得积分10
8秒前
虚心的仙人掌完成签到,获得积分0
9秒前
信远征完成签到,获得积分10
9秒前
落尘完成签到,获得积分10
10秒前
务实小鸽子完成签到 ,获得积分10
11秒前
11秒前
王小磊发布了新的文献求助10
11秒前
Iwan完成签到,获得积分10
11秒前
小蘑菇应助LIUYONG采纳,获得10
15秒前
大气的山彤完成签到,获得积分10
16秒前
苏木发布了新的文献求助10
16秒前
Yep0672完成签到,获得积分10
16秒前
小王发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
18秒前
粥粥完成签到,获得积分10
19秒前
20秒前
小宋完成签到,获得积分10
20秒前
干净的芮完成签到,获得积分10
20秒前
peace完成签到,获得积分10
20秒前
明天会更美好完成签到,获得积分10
22秒前
初七完成签到,获得积分20
22秒前
弎夜完成签到,获得积分10
23秒前
O-M175发布了新的文献求助10
23秒前
23秒前
春春完成签到,获得积分10
23秒前
zasideler完成签到,获得积分10
24秒前
袁凯文发布了新的文献求助10
24秒前
科目三应助崔崔采纳,获得10
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029