Fault Diagnosis of Imbalance and Misalignment in Rotor-Bearing Systems Using Deep Learning

残余物 稳健性(进化) 计算机科学 人工智能 方位(导航) 模式识别(心理学) 卷积神经网络 深度学习 特征提取 断层(地质) 降噪 控制理论(社会学) 算法 地震学 地质学 生物化学 化学 控制(管理) 基因
作者
Fayou Liu,Weijia Li,Yaozhong Wu,Yuhang He,Tianyun Li
出处
期刊:Polish Maritime Research [De Gruyter]
卷期号:31 (1): 102-113 被引量:1
标识
DOI:10.2478/pomr-2024-0011
摘要

Abstract Rotor-bearing systems are important components of rotating machinery and transmission systems, and imbalance and misalignment are inevitable in such systems. At present, the main challenges faced by state-of-the-art fault diagnosis methods involve the extraction of fault features under strong background noise and the classification of different fault modes. In this paper, a fault diagnosis method based on an improved deep residual shrinkage network (IDRSN) is proposed with the aim of achieving end-to-end fault diagnosis of a rotor-bearing system. First, a method called wavelet threshold denoising and variational mode decomposition (WTD-VMD) is proposed, which can process original noisy signals into intrinsic mode functions (IMFs) with a salient feature. These one-dimensional IMFs are then transformed into two-dimensional images using a Gramian angular field (GAF) to give datasets for the deep residual shrinkage network (DRSN), which can achieve high levels of accuracy under strong background noise. Finally, a comprehensive test platform for a rotor-bearing system is built to verify the effectiveness of the proposed method in the field. The true test accuracy of the model at a 95% confidence interval is found to range from 84.09% to 86.51%. The proposed model exhibits good robustness when dealing with noisy samples and gives the best classification results for fault diagnosis under misalignment, with a test accuracy of 100%. It also achieves a higher testing accuracy compared to fault diagnosis methods based on convolutional neural networks and deep residual networks without improvement. In summary, IDRSN has significant value for deep learning engineering applications involving the fault diagnosis of rotor-bearing systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
carbon-dots发布了新的文献求助10
1秒前
3秒前
蓝泡泡完成签到 ,获得积分10
5秒前
5秒前
大饼发布了新的文献求助30
6秒前
hjookhghhbb发布了新的文献求助10
7秒前
8秒前
10秒前
sunishope发布了新的文献求助10
10秒前
wrr完成签到,获得积分10
11秒前
英勇无敌完成签到,获得积分10
11秒前
王栋发布了新的文献求助30
12秒前
子车茗应助平淡的77采纳,获得20
12秒前
Tingshuyu完成签到,获得积分10
13秒前
甘蔗侠发布了新的文献求助10
13秒前
wrr发布了新的文献求助10
14秒前
14秒前
潇潇雨落完成签到,获得积分10
14秒前
15秒前
AAA完成签到,获得积分10
18秒前
火星上冰珍完成签到,获得积分10
19秒前
19秒前
21秒前
tursun完成签到,获得积分10
22秒前
小蘑菇应助www采纳,获得10
23秒前
23秒前
24秒前
24秒前
25秒前
SciGPT应助xuan采纳,获得10
26秒前
辛夷发布了新的文献求助10
26秒前
27秒前
28秒前
31秒前
a3979107发布了新的文献求助10
32秒前
AmyHu发布了新的文献求助10
32秒前
菠萝菠萝哒应助sunishope采纳,获得10
33秒前
man驳回了脑洞疼应助
35秒前
单身的衫完成签到,获得积分10
35秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314016
求助须知:如何正确求助?哪些是违规求助? 2946405
关于积分的说明 8529984
捐赠科研通 2622049
什么是DOI,文献DOI怎么找? 1434315
科研通“疑难数据库(出版商)”最低求助积分说明 665201
邀请新用户注册赠送积分活动 650792