Fault Diagnosis of Imbalance and Misalignment in Rotor-Bearing Systems Using Deep Learning

残余物 稳健性(进化) 计算机科学 人工智能 方位(导航) 模式识别(心理学) 卷积神经网络 深度学习 特征提取 断层(地质) 降噪 控制理论(社会学) 算法 控制(管理) 化学 地震学 地质学 基因 生物化学
作者
Fayou Liu,Weijia Li,Yaozhong Wu,Yuhang He,Tianyun Li
出处
期刊:Polish Maritime Research [De Gruyter Open]
卷期号:31 (1): 102-113 被引量:1
标识
DOI:10.2478/pomr-2024-0011
摘要

Abstract Rotor-bearing systems are important components of rotating machinery and transmission systems, and imbalance and misalignment are inevitable in such systems. At present, the main challenges faced by state-of-the-art fault diagnosis methods involve the extraction of fault features under strong background noise and the classification of different fault modes. In this paper, a fault diagnosis method based on an improved deep residual shrinkage network (IDRSN) is proposed with the aim of achieving end-to-end fault diagnosis of a rotor-bearing system. First, a method called wavelet threshold denoising and variational mode decomposition (WTD-VMD) is proposed, which can process original noisy signals into intrinsic mode functions (IMFs) with a salient feature. These one-dimensional IMFs are then transformed into two-dimensional images using a Gramian angular field (GAF) to give datasets for the deep residual shrinkage network (DRSN), which can achieve high levels of accuracy under strong background noise. Finally, a comprehensive test platform for a rotor-bearing system is built to verify the effectiveness of the proposed method in the field. The true test accuracy of the model at a 95% confidence interval is found to range from 84.09% to 86.51%. The proposed model exhibits good robustness when dealing with noisy samples and gives the best classification results for fault diagnosis under misalignment, with a test accuracy of 100%. It also achieves a higher testing accuracy compared to fault diagnosis methods based on convolutional neural networks and deep residual networks without improvement. In summary, IDRSN has significant value for deep learning engineering applications involving the fault diagnosis of rotor-bearing systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助李卓霖采纳,获得10
刚刚
Chem34完成签到,获得积分10
刚刚
1111发布了新的文献求助10
1秒前
NexusExplorer应助dududu采纳,获得10
1秒前
2秒前
2秒前
李多多完成签到,获得积分10
2秒前
2秒前
零琳完成签到 ,获得积分10
3秒前
3秒前
陈曦完成签到,获得积分10
3秒前
3秒前
隐形曼青应助安安采纳,获得10
3秒前
li完成签到,获得积分10
4秒前
4秒前
Ava应助温婉的念文采纳,获得10
4秒前
4秒前
lxcy0612发布了新的文献求助10
4秒前
5秒前
慕青应助透视眼采纳,获得10
6秒前
消摇发布了新的文献求助10
6秒前
CipherSage应助小野猫采纳,获得30
6秒前
科研通AI6应助现代友桃采纳,获得10
6秒前
赵远航发布了新的文献求助10
7秒前
星辰大海应助椰子采纳,获得10
7秒前
8秒前
笛恰儿发布了新的文献求助20
8秒前
忧郁的雨发布了新的文献求助10
8秒前
9秒前
9秒前
SciGPT应助s615采纳,获得10
9秒前
9秒前
10秒前
10秒前
Alger完成签到,获得积分10
10秒前
1111完成签到,获得积分10
10秒前
11秒前
酷波er应助亦玉采纳,获得10
12秒前
12秒前
碧玉墨绿发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4951300
求助须知:如何正确求助?哪些是违规求助? 4213988
关于积分的说明 13107085
捐赠科研通 3995738
什么是DOI,文献DOI怎么找? 2187102
邀请新用户注册赠送积分活动 1202366
关于科研通互助平台的介绍 1115447