Fault Diagnosis of Imbalance and Misalignment in Rotor-Bearing Systems Using Deep Learning

残余物 稳健性(进化) 计算机科学 人工智能 方位(导航) 模式识别(心理学) 卷积神经网络 深度学习 特征提取 断层(地质) 降噪 控制理论(社会学) 算法 地震学 地质学 生物化学 化学 控制(管理) 基因
作者
Fayou Liu,Weijia Li,Yaozhong Wu,Yuhang He,Tianyun Li
出处
期刊:Polish Maritime Research [De Gruyter]
卷期号:31 (1): 102-113 被引量:1
标识
DOI:10.2478/pomr-2024-0011
摘要

Abstract Rotor-bearing systems are important components of rotating machinery and transmission systems, and imbalance and misalignment are inevitable in such systems. At present, the main challenges faced by state-of-the-art fault diagnosis methods involve the extraction of fault features under strong background noise and the classification of different fault modes. In this paper, a fault diagnosis method based on an improved deep residual shrinkage network (IDRSN) is proposed with the aim of achieving end-to-end fault diagnosis of a rotor-bearing system. First, a method called wavelet threshold denoising and variational mode decomposition (WTD-VMD) is proposed, which can process original noisy signals into intrinsic mode functions (IMFs) with a salient feature. These one-dimensional IMFs are then transformed into two-dimensional images using a Gramian angular field (GAF) to give datasets for the deep residual shrinkage network (DRSN), which can achieve high levels of accuracy under strong background noise. Finally, a comprehensive test platform for a rotor-bearing system is built to verify the effectiveness of the proposed method in the field. The true test accuracy of the model at a 95% confidence interval is found to range from 84.09% to 86.51%. The proposed model exhibits good robustness when dealing with noisy samples and gives the best classification results for fault diagnosis under misalignment, with a test accuracy of 100%. It also achieves a higher testing accuracy compared to fault diagnosis methods based on convolutional neural networks and deep residual networks without improvement. In summary, IDRSN has significant value for deep learning engineering applications involving the fault diagnosis of rotor-bearing systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
3秒前
深情安青应助shier采纳,获得10
4秒前
xjtu发布了新的文献求助10
4秒前
Aurinse发布了新的文献求助10
5秒前
耍酷的卿应助mumumumu采纳,获得10
5秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
上官若男应助鲨鲨采纳,获得10
7秒前
8秒前
无极微光应助132采纳,获得20
8秒前
曹杨磊完成签到,获得积分10
8秒前
8秒前
9秒前
xjtu完成签到,获得积分10
10秒前
彭于晏应助spinon采纳,获得10
11秒前
12秒前
KSung完成签到 ,获得积分10
12秒前
大模型应助余周2024采纳,获得10
12秒前
Twonej应助Andy采纳,获得30
13秒前
可莉完成签到 ,获得积分10
14秒前
14秒前
wsdshuai比发布了新的文献求助10
15秒前
魏猛完成签到,获得积分10
15秒前
16秒前
桐桐应助wei采纳,获得10
16秒前
仁爱嫣发布了新的文献求助20
16秒前
力劈华山完成签到,获得积分10
17秒前
JamesPei应助平淡大船采纳,获得10
18秒前
18秒前
18秒前
li给li的求助进行了留言
19秒前
靓丽衫完成签到 ,获得积分10
19秒前
hhh完成签到,获得积分20
20秒前
科研小白完成签到 ,获得积分10
20秒前
ai幸完成签到,获得积分10
20秒前
科研通AI6.1应助积极纲采纳,获得10
20秒前
CodeCraft应助E10100采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761101
求助须知:如何正确求助?哪些是违规求助? 5527734
关于积分的说明 15398943
捐赠科研通 4897671
什么是DOI,文献DOI怎么找? 2634354
邀请新用户注册赠送积分活动 1582460
关于科研通互助平台的介绍 1537768