Fault Diagnosis of Imbalance and Misalignment in Rotor-Bearing Systems Using Deep Learning

残余物 稳健性(进化) 计算机科学 人工智能 方位(导航) 模式识别(心理学) 卷积神经网络 深度学习 特征提取 断层(地质) 降噪 控制理论(社会学) 算法 地震学 地质学 生物化学 化学 控制(管理) 基因
作者
Fayou Liu,Weijia Li,Yaozhong Wu,Yuhang He,Tianyun Li
出处
期刊:Polish Maritime Research [De Gruyter Open]
卷期号:31 (1): 102-113 被引量:1
标识
DOI:10.2478/pomr-2024-0011
摘要

Abstract Rotor-bearing systems are important components of rotating machinery and transmission systems, and imbalance and misalignment are inevitable in such systems. At present, the main challenges faced by state-of-the-art fault diagnosis methods involve the extraction of fault features under strong background noise and the classification of different fault modes. In this paper, a fault diagnosis method based on an improved deep residual shrinkage network (IDRSN) is proposed with the aim of achieving end-to-end fault diagnosis of a rotor-bearing system. First, a method called wavelet threshold denoising and variational mode decomposition (WTD-VMD) is proposed, which can process original noisy signals into intrinsic mode functions (IMFs) with a salient feature. These one-dimensional IMFs are then transformed into two-dimensional images using a Gramian angular field (GAF) to give datasets for the deep residual shrinkage network (DRSN), which can achieve high levels of accuracy under strong background noise. Finally, a comprehensive test platform for a rotor-bearing system is built to verify the effectiveness of the proposed method in the field. The true test accuracy of the model at a 95% confidence interval is found to range from 84.09% to 86.51%. The proposed model exhibits good robustness when dealing with noisy samples and gives the best classification results for fault diagnosis under misalignment, with a test accuracy of 100%. It also achieves a higher testing accuracy compared to fault diagnosis methods based on convolutional neural networks and deep residual networks without improvement. In summary, IDRSN has significant value for deep learning engineering applications involving the fault diagnosis of rotor-bearing systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小汤圆发布了新的文献求助10
刚刚
刚刚
陈博士发布了新的文献求助10
刚刚
medlive2020完成签到,获得积分10
刚刚
1秒前
chenmeimei2012完成签到 ,获得积分10
1秒前
2秒前
2秒前
了0完成签到 ,获得积分10
3秒前
会笑的黑猫完成签到,获得积分10
3秒前
夜半完成签到,获得积分20
3秒前
Hepatology完成签到,获得积分10
3秒前
3秒前
3秒前
哎哟很烦完成签到,获得积分10
3秒前
yar应助科研通管家采纳,获得10
4秒前
十二应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
任老师发布了新的文献求助10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
yar应助科研通管家采纳,获得10
4秒前
阿瑾发布了新的文献求助10
4秒前
momo应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
坦率耳机应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
916应助科研通管家采纳,获得10
5秒前
yar应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得30
5秒前
田様应助科研通管家采纳,获得10
5秒前
坦率的匪应助科研通管家采纳,获得20
5秒前
收拾收拾应助科研通管家采纳,获得10
5秒前
dhts应助京墨采纳,获得10
5秒前
李健应助LLL采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650