Fault Diagnosis of Imbalance and Misalignment in Rotor-Bearing Systems Using Deep Learning

残余物 稳健性(进化) 计算机科学 人工智能 方位(导航) 模式识别(心理学) 卷积神经网络 深度学习 特征提取 断层(地质) 降噪 控制理论(社会学) 算法 地震学 地质学 生物化学 化学 控制(管理) 基因
作者
Fayou Liu,Weijia Li,Yaozhong Wu,Yuhang He,Tianyun Li
出处
期刊:Polish Maritime Research [De Gruyter]
卷期号:31 (1): 102-113 被引量:1
标识
DOI:10.2478/pomr-2024-0011
摘要

Abstract Rotor-bearing systems are important components of rotating machinery and transmission systems, and imbalance and misalignment are inevitable in such systems. At present, the main challenges faced by state-of-the-art fault diagnosis methods involve the extraction of fault features under strong background noise and the classification of different fault modes. In this paper, a fault diagnosis method based on an improved deep residual shrinkage network (IDRSN) is proposed with the aim of achieving end-to-end fault diagnosis of a rotor-bearing system. First, a method called wavelet threshold denoising and variational mode decomposition (WTD-VMD) is proposed, which can process original noisy signals into intrinsic mode functions (IMFs) with a salient feature. These one-dimensional IMFs are then transformed into two-dimensional images using a Gramian angular field (GAF) to give datasets for the deep residual shrinkage network (DRSN), which can achieve high levels of accuracy under strong background noise. Finally, a comprehensive test platform for a rotor-bearing system is built to verify the effectiveness of the proposed method in the field. The true test accuracy of the model at a 95% confidence interval is found to range from 84.09% to 86.51%. The proposed model exhibits good robustness when dealing with noisy samples and gives the best classification results for fault diagnosis under misalignment, with a test accuracy of 100%. It also achieves a higher testing accuracy compared to fault diagnosis methods based on convolutional neural networks and deep residual networks without improvement. In summary, IDRSN has significant value for deep learning engineering applications involving the fault diagnosis of rotor-bearing systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Sw完成签到,获得积分10
1秒前
su发布了新的文献求助30
1秒前
1秒前
2秒前
3秒前
Derenyi发布了新的文献求助10
3秒前
香蕉觅云应助安详的小凝采纳,获得10
3秒前
李金荣完成签到,获得积分10
3秒前
3秒前
小合发布了新的文献求助10
4秒前
小二郎应助tekleo采纳,获得10
4秒前
4秒前
4秒前
千夜冰柠萌完成签到,获得积分10
5秒前
5秒前
5秒前
ppf发布了新的文献求助10
5秒前
yyq完成签到,获得积分10
6秒前
张怡完成签到,获得积分10
6秒前
6秒前
Wawoo发布了新的文献求助10
6秒前
俊俏的紫菜完成签到,获得积分10
6秒前
金虎发布了新的文献求助10
6秒前
和谐续发布了新的文献求助10
7秒前
小灿发布了新的文献求助10
7秒前
faraway完成签到 ,获得积分10
7秒前
韩哈哈完成签到,获得积分10
7秒前
无所归兮完成签到,获得积分10
7秒前
Vermouth完成签到,获得积分10
7秒前
李绿真发布了新的文献求助10
8秒前
拼搏蜗牛完成签到,获得积分10
8秒前
南方周末完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
龙仔子发布了新的文献求助30
9秒前
高兴可乐发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582358
求助须知:如何正确求助?哪些是违规求助? 4666421
关于积分的说明 14762778
捐赠科研通 4608475
什么是DOI,文献DOI怎么找? 2528699
邀请新用户注册赠送积分活动 1498050
关于科研通互助平台的介绍 1466736