残余物
稳健性(进化)
计算机科学
人工智能
方位(导航)
模式识别(心理学)
卷积神经网络
深度学习
特征提取
断层(地质)
降噪
控制理论(社会学)
算法
地震学
地质学
生物化学
化学
控制(管理)
基因
作者
Fayou Liu,Weijia Li,Yaozhong Wu,Yuhang He,Tianyun Li
出处
期刊:Polish Maritime Research
[De Gruyter]
日期:2024-03-01
卷期号:31 (1): 102-113
被引量:1
标识
DOI:10.2478/pomr-2024-0011
摘要
Abstract Rotor-bearing systems are important components of rotating machinery and transmission systems, and imbalance and misalignment are inevitable in such systems. At present, the main challenges faced by state-of-the-art fault diagnosis methods involve the extraction of fault features under strong background noise and the classification of different fault modes. In this paper, a fault diagnosis method based on an improved deep residual shrinkage network (IDRSN) is proposed with the aim of achieving end-to-end fault diagnosis of a rotor-bearing system. First, a method called wavelet threshold denoising and variational mode decomposition (WTD-VMD) is proposed, which can process original noisy signals into intrinsic mode functions (IMFs) with a salient feature. These one-dimensional IMFs are then transformed into two-dimensional images using a Gramian angular field (GAF) to give datasets for the deep residual shrinkage network (DRSN), which can achieve high levels of accuracy under strong background noise. Finally, a comprehensive test platform for a rotor-bearing system is built to verify the effectiveness of the proposed method in the field. The true test accuracy of the model at a 95% confidence interval is found to range from 84.09% to 86.51%. The proposed model exhibits good robustness when dealing with noisy samples and gives the best classification results for fault diagnosis under misalignment, with a test accuracy of 100%. It also achieves a higher testing accuracy compared to fault diagnosis methods based on convolutional neural networks and deep residual networks without improvement. In summary, IDRSN has significant value for deep learning engineering applications involving the fault diagnosis of rotor-bearing systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI