清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Recommender Systems in the Era of Large Language Models (LLMs)

计算机科学 推荐系统 数据科学 万维网 情报检索
作者
Zihuai Zhao,Wenqi Fan,Jiatong Li,Yunqing Liu,Xiaowei Mei,Yiqi Wang,Zhen Wen,Fei Wang,Xiangyu Zhao,Jiliang Tang,Qing Li
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (11): 6889-6907 被引量:39
标识
DOI:10.1109/tkde.2024.3392335
摘要

With the prosperity of e-commerce and web applications, Recommender Systems (RecSys) have become an indispensable and important component in our daily lives, providing personalized suggestions that cater to user preferences. While Deep Neural Networks (DNNs) have achieved significant advancements in enhancing recommender systems by modeling user-item interactions and incorporating their textual side information, these DNN-based methods still exhibit some limitations, such as difficulties in effectively understanding users' interests and capturing textual side information, inabilities in generalizing to various seen/unseen recommendation scenarios and reasoning on their predictions, etc. Meanwhile, the development of Large Language Models (LLMs), such as ChatGPT and GPT-4, has revolutionized the fields of Natural Language Processing (NLP) and Artificial Intelligence (AI), due to their remarkable abilities in fundamental responsibilities of language understanding and generation, as well as impressive generalization capabilities and reasoning skills. As a result, recent studies have actively attempted to harness the power of LLMs to enhance recommender systems. Given the rapid evolution of this research direction in recommender systems, there is a pressing need for a systematic overview that summarizes existing LLM-empowered recommender systems, so as to provide researchers and practitioners in relevant fields with an in-depth understanding. Therefore, in this survey, we conduct a comprehensive review of LLM-empowered recommender systems from various aspects including pre-training, fine-tuning, and prompting paradigms. More specifically, we first introduce the representative methods to harness the power of LLMs (as a feature encoder) for learning representations of users and items. Then, we systematically review the emerging advanced techniques of LLMs for enhancing recommender systems from three paradigms, namely pre-training, fine-tuning, and prompting. Finally, we comprehensively discuss the promising future directions in this emerging field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
25秒前
蔺南风发布了新的文献求助10
31秒前
房天川完成签到 ,获得积分10
45秒前
ww完成签到,获得积分10
1分钟前
1分钟前
jpqiu发布了新的文献求助10
1分钟前
Boren完成签到,获得积分10
2分钟前
呜呜呜发布了新的文献求助10
2分钟前
单薄的英姑完成签到 ,获得积分10
2分钟前
Arthur完成签到,获得积分10
2分钟前
呜呜呜发布了新的文献求助10
2分钟前
扑流萤发布了新的文献求助10
2分钟前
科研通AI2S应助扑流萤采纳,获得10
2分钟前
英俊的铭应助扑流萤采纳,获得10
2分钟前
呜呜呜发布了新的文献求助10
2分钟前
章铭-111完成签到 ,获得积分10
2分钟前
稳重代容发布了新的文献求助10
3分钟前
al完成签到 ,获得积分10
3分钟前
wx1完成签到 ,获得积分0
3分钟前
宇文雨文完成签到 ,获得积分10
3分钟前
呜呜呜发布了新的文献求助20
4分钟前
唐新惠完成签到 ,获得积分10
4分钟前
gszy1975完成签到,获得积分10
4分钟前
4分钟前
yuntong发布了新的文献求助20
4分钟前
稻子完成签到 ,获得积分10
5分钟前
852应助有志者采纳,获得10
6分钟前
April完成签到 ,获得积分10
6分钟前
慕青应助小鳄鱼夸夸采纳,获得10
6分钟前
7分钟前
7分钟前
楚楚发布了新的文献求助10
7分钟前
7分钟前
有志者发布了新的文献求助10
7分钟前
有志者完成签到,获得积分10
7分钟前
7分钟前
7分钟前
情怀应助科研通管家采纳,获得10
7分钟前
7分钟前
刘思琪发布了新的文献求助10
8分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244776
求助须知:如何正确求助?哪些是违规求助? 2888424
关于积分的说明 8252869
捐赠科研通 2556891
什么是DOI,文献DOI怎么找? 1385460
科研通“疑难数据库(出版商)”最低求助积分说明 650176
邀请新用户注册赠送积分活动 626294