Mining Maximum Ordinal–Cardinal Consensus for Large-Scale Group Decision Making With Incomplete Fuzzy Preference Relations

群体决策 偏爱 序数数据 有序优化 数学 模糊逻辑 模糊集 群(周期表) 顺序量表 人工智能 比例(比率) 计算机科学 数据挖掘 统计 心理学 社会心理学 化学 物理 有机化学 量子力学
作者
Liang Qian,Chenyu Luo,Zhen Zhang,Dong Cheng
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (6): 3542-3555 被引量:8
标识
DOI:10.1109/tfuzz.2024.3375863
摘要

In large-scale group decision-making (LSGDM), incomplete preferences often arise due to the complexity of LSGDM or the limited experience of decision-makers (DMs). When DMs provide preferences using incomplete fuzzy preference relations (IFPRs), most studies focus on cardinal information, overlooking the vital ordinal relations in IFPRs. However, a high level of cardinal consensus may not represent unanimous pairwise comparisons among DMs' preferences. In contrast, ordinal relations are crucial for ranking results by enabling pairwise comparisons. Therefore, this paper presents an LSGDM framework mining ordinal-cardinal group consensus by prioritizing ordinal relations followed by cardinal information of IFPRs. We begin by extracting ordinal relations from IFPRs. Next, an ordinal clustering optimization model is constructed to minimize overall conflicts. Finally, a value function-based consensus model is developed, identifying a consensus ranking by considering ordinal and cardinal information within subgroups. By linking this value function with IFPRs, each subgroup achieves a complete fuzzy preference relation (FPR) that is both ordinal and cardinal consistent. The application example shows the feasibility of this approach. Numerical analyses validate the clustering optimization model's effectiveness in reducing the global average conflict degree, and simulation studies with varying levels of incompleteness in FPRs demonstrate the consensus model's robustness in achieving consistent ranking results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助Zhang采纳,获得10
刚刚
斯文的灵雁完成签到,获得积分10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
Leon应助科研通管家采纳,获得100
1秒前
丘比特应助帅玉玉采纳,获得10
1秒前
明天更好发布了新的文献求助10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
剑兰先生应助科研通管家采纳,获得200
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
2秒前
随便发布了新的文献求助10
2秒前
kingwill应助科研通管家采纳,获得20
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
今后应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
an发布了新的文献求助10
3秒前
wjw关闭了wjw文献求助
3秒前
果汁发布了新的文献求助30
4秒前
4秒前
沉默的以山完成签到,获得积分20
4秒前
4秒前
怕黑的班完成签到,获得积分10
4秒前
LL完成签到,获得积分10
5秒前
想摆烂发布了新的文献求助10
5秒前
5秒前
田子璘完成签到,获得积分20
5秒前
琮博完成签到,获得积分10
6秒前
无花果应助随便采纳,获得10
6秒前
脑洞疼应助张豪杰采纳,获得10
6秒前
Akim应助Relax采纳,获得10
7秒前
CLL完成签到 ,获得积分10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759