METEO-DLNet: Quantitative Precipitation Nowcasting Net Based on Meteorological Features and Deep Learning

临近预报 降水 环境科学 气象学 气候学 遥感 地质学 地理
作者
Jianping Hu,Bo Yin,Chaoqun Guo
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (6): 1063-1063 被引量:1
标识
DOI:10.3390/rs16061063
摘要

Precipitation prediction plays a crucial role in people’s daily lives, work, and social development. Especially in the context of global climate variability, where extreme precipitation causes significant losses to the property of people worldwide, it is urgently necessary to use deep learning algorithms based on radar echo extrapolation for short-term precipitation forecasting. However, there are inadequately addressed issues with radar echo extrapolation methods based on deep learning, particularly when considering the inherent meteorological characteristics of precipitation on spatial and temporal scales. Additionally, traditional forecasting methods face challenges in handling local images that deviate from the overall trend. To address these problems, we propose the METEO-DLNet short-term precipitation prediction network based on meteorological features and deep learning. Experimental results demonstrate that the Meteo-LSTM of METEO-DLNet, utilizing spatial attention and differential attention, adequately learns the influence of meteorological features on spatial and temporal scales. The fusion mechanism, combining self-attention and gating mechanisms, resolves the divergence between local images and the overall trend. Quantitative and qualitative experiments show that METEO-DLNet outperforms current mainstream deep learning precipitation prediction models in natural spatiotemporal sequence problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
今后应助潇洒的冰淇淋采纳,获得10
刚刚
脑洞疼应助penglinhua采纳,获得10
1秒前
3秒前
Jasper应助WYN采纳,获得10
3秒前
bluesiryao发布了新的文献求助10
3秒前
MAX33发布了新的文献求助10
3秒前
丽优完成签到,获得积分10
3秒前
3秒前
4秒前
钱钱完成签到,获得积分10
4秒前
科研通AI6应助www采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
yunyueqixun完成签到,获得积分10
6秒前
江J发布了新的文献求助30
6秒前
刘佳诺发布了新的文献求助10
6秒前
丽优发布了新的文献求助10
7秒前
求助人员发布了新的文献求助10
7秒前
土豆完成签到,获得积分10
8秒前
free_man完成签到,获得积分10
8秒前
蛋黄啵啵完成签到 ,获得积分10
8秒前
9秒前
9秒前
10秒前
元谷雪发布了新的文献求助10
10秒前
10秒前
喜悦的威应助科研通管家采纳,获得50
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
asdfzxcv应助科研通管家采纳,获得10
11秒前
烟花应助阿强采纳,获得10
12秒前
asdfzxcv应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
12秒前
Owen应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648490
求助须知:如何正确求助?哪些是违规求助? 4775560
关于积分的说明 15044364
捐赠科研通 4807469
什么是DOI,文献DOI怎么找? 2570809
邀请新用户注册赠送积分活动 1527552
关于科研通互助平台的介绍 1486499