METEO-DLNet: Quantitative Precipitation Nowcasting Net Based on Meteorological Features and Deep Learning

临近预报 降水 环境科学 气象学 气候学 遥感 地质学 地理
作者
Jianping Hu,Bo Yin,Chaoqun Guo
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:16 (6): 1063-1063 被引量:1
标识
DOI:10.3390/rs16061063
摘要

Precipitation prediction plays a crucial role in people’s daily lives, work, and social development. Especially in the context of global climate variability, where extreme precipitation causes significant losses to the property of people worldwide, it is urgently necessary to use deep learning algorithms based on radar echo extrapolation for short-term precipitation forecasting. However, there are inadequately addressed issues with radar echo extrapolation methods based on deep learning, particularly when considering the inherent meteorological characteristics of precipitation on spatial and temporal scales. Additionally, traditional forecasting methods face challenges in handling local images that deviate from the overall trend. To address these problems, we propose the METEO-DLNet short-term precipitation prediction network based on meteorological features and deep learning. Experimental results demonstrate that the Meteo-LSTM of METEO-DLNet, utilizing spatial attention and differential attention, adequately learns the influence of meteorological features on spatial and temporal scales. The fusion mechanism, combining self-attention and gating mechanisms, resolves the divergence between local images and the overall trend. Quantitative and qualitative experiments show that METEO-DLNet outperforms current mainstream deep learning precipitation prediction models in natural spatiotemporal sequence problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毅诚菌发布了新的文献求助30
刚刚
1秒前
古灵精怪完成签到 ,获得积分10
1秒前
鸣笛应助jyyg采纳,获得10
1秒前
科研通AI6应助青花采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
完美世界应助称心的乘云采纳,获得10
2秒前
3秒前
24豆发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
haojiaolv完成签到,获得积分10
5秒前
6秒前
6秒前
马潇完成签到 ,获得积分20
7秒前
8秒前
xiaoshi完成签到,获得积分10
8秒前
8秒前
meta完成签到,获得积分10
9秒前
lin发布了新的文献求助10
9秒前
NexusExplorer应助周周采纳,获得10
9秒前
宁人发布了新的文献求助10
9秒前
357完成签到 ,获得积分20
10秒前
10秒前
qwe31533发布了新的文献求助30
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
13秒前
强子今天读文献了嘛完成签到,获得积分10
14秒前
浮浮世世发布了新的文献求助10
14秒前
14秒前
CTtoF完成签到,获得积分10
14秒前
15秒前
huanger完成签到,获得积分0
16秒前
17秒前
harrison完成签到,获得积分20
17秒前
狂野未来发布了新的文献求助10
18秒前
花露水完成签到,获得积分20
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600474
求助须知:如何正确求助?哪些是违规求助? 4010608
关于积分的说明 12416866
捐赠科研通 3690360
什么是DOI,文献DOI怎么找? 2034326
邀请新用户注册赠送积分活动 1067728
科研通“疑难数据库(出版商)”最低求助积分说明 952513