期刊:Cancer Research [American Association for Cancer Research] 日期:2024-03-22卷期号:84 (6_Supplement): 4514-4514
标识
DOI:10.1158/1538-7445.am2024-4514
摘要
Abstract Background: Proteolysis targeting chimeras (PROTACs) are novel structures designed to target a protein of interest (POI) for ubiquitination and degradation, leading to the selective reduction in the expression levels of the POI. Hematopoietic progenitor kinase 1 (HPK1) is considered a promising target for tumor immunotherapy. PROTAC-involved disruption of HPK1 protein activity enhanced the treatment efficacy of CAR-T-cell-based immunotherapies in different solid tumors and mouse models. Thus, targeting HPK1 by PROTAC to restore T-cell activity is an attractive approach to induce a greater immune responses in cancer. Results: We designed and synthesized a series of HPK1 degraders by tethering our previously discovered novel HPK1 inhibitor with CRBN binder through various linkage. The most potent PROTAC effectively degrades HPK1 proteins in the Ramous cell in a dose-dependent manner and achieves DC50 value <50 nM. The maximum degradation (D max ) values achieved are >90%. Our PROTAC showed EC50 value <100 nM for IL-2 and IFNγ production. PK studies revealed a low clearance, high plasma exposure and oral bioavailability in mice and rats. Furthermore, our PROTAC is shown to induce robust and statistically significant tumor growth inhibition in the MC38 and CT26 syngeneic model with increased T cell signatures observed within the tumor. The PROTAC in combination with anti-PD1 also resulted in robust anti-tumor activity with TGI > 90%. The 14 days DRF experiment shows that the compound has a great safety window(>200 folds). Conclusion: We show here that a potent oral HPK1 degrader demonstrates strong immune cell activation and robust anti-tumor activity in mouse syngeneic tumor models, as a single agent and in combination with anti-PD1. Further evaluation of these potent degraders in additional in vivo studies will continue to build upon our mechanistic understanding of HPK1 degradation as a novel immunomodulatory approach for anti-tumor immunity. Citation Format: Zhimin Zhang, Mengqiang Wu, Ling Wang, Xi Yang, Zhiping Zhang, Liubin Guo, Hao Pan, Mengting Zhao, Linli Wang, Sirui Liu, Zhao Dong, Chunhua Jiang, Haowen Zheng, Dongzhou Liu. Discovery of potent and orally bioavailable degraders of HPK1 based on a novel HPK1 binder [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 1 (Regular Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(6_Suppl):Abstract nr 4514.