A spatio-temporal fusion deep learning network with application to lightning nowcasting

临近预报 闪电(连接器) 深度学习 计算机科学 气象学 人工智能 地质学 地理 物理 功率(物理) 量子力学
作者
Changhai Zhou,Ling Fan,Ferrante Neri
出处
期刊:Integrated Computer-aided Engineering [IOS Press]
卷期号:31 (3): 233-247 被引量:1
标识
DOI:10.3233/ica-240734
摘要

Lightning is a rapidly evolving phenomenon, exhibiting both mesoscale and microscale characteristics. Its prediction significantly relies on timely and accurate data observation. With the implementation of new generation weather radar systems and lightning detection networks, radar reflectivity image products, and lightning observation data are becoming increasingly abundant. Research focus has shifted towards lightning nowcasting (prediction of imminent events), utilizing deep learning (DL) methods to extract lightning features from very large data sets. In this paper, we propose a novel spatio-temporal fusion deep learning lightning nowcasting network (STF-LightNet) for lightning nowcasting. The network is based on a 3-dimensional U-Net architecture with encoder-decoder blocks and adopts a structure of multiple branches as well as the main path for the encoder block. To address the challenges of feature extraction and fusion of multi-source data, multiple branches are used to extract different data features independently, and the main path fuses these features. Additionally, a spatial attention (SA) module is added to each branch and the main path to automatically identify lightning areas and enhance their features. The main path fusion is conducted in two steps: the first step fuses features from the branches, and the second fuses features from the previous and current levels of the main path using two different methodsthe weighted summation fusion method and the attention gate fusion method. To overcome the sparsity of lightning observations, we employ an inverse frequency weighted cross-entropy loss function. Finally, STF-LightNet is trained using observations from the previous half hour to predict lightning in the next hour. The outcomes illustrate that the fusion of both the multi-branch and main path structures enhances the network’s ability to effectively integrate features from diverse data sources. Attention mechanisms and fusion modules allow the network to capture more detailed features in the images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
氟锑酸完成签到 ,获得积分10
16秒前
摆渡人发布了新的文献求助10
18秒前
19秒前
紫熊完成签到,获得积分10
19秒前
Cheney完成签到 ,获得积分10
23秒前
缓慢如南应助摆渡人采纳,获得10
25秒前
TY完成签到,获得积分10
26秒前
28秒前
小飞完成签到 ,获得积分10
30秒前
文献搬运工完成签到 ,获得积分10
33秒前
吱吱草莓派完成签到 ,获得积分10
35秒前
胖胖橘完成签到 ,获得积分10
37秒前
sino-ft发布了新的文献求助10
37秒前
CipherSage应助受伤芝麻采纳,获得10
46秒前
陈米花完成签到,获得积分10
49秒前
yyjl31完成签到,获得积分0
49秒前
Simon_chat完成签到,获得积分0
49秒前
bkagyin应助爱撒娇的紫菜采纳,获得10
51秒前
吐司炸弹完成签到,获得积分10
51秒前
mayfly完成签到,获得积分10
52秒前
1002SHIB完成签到,获得积分10
53秒前
nihaolaojiu完成签到,获得积分10
53秒前
sheetung完成签到,获得积分10
53秒前
1分钟前
李健应助卷123采纳,获得10
1分钟前
受伤芝麻发布了新的文献求助10
1分钟前
1分钟前
卷123发布了新的文献求助10
1分钟前
1分钟前
糖果苏扬完成签到 ,获得积分10
1分钟前
CyrusSo524完成签到,获得积分10
1分钟前
有魅力荟发布了新的文献求助10
1分钟前
路路完成签到 ,获得积分10
1分钟前
scenery0510完成签到,获得积分10
1分钟前
南宫清涟完成签到 ,获得积分10
1分钟前
1分钟前
灿华完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3571332
求助须知:如何正确求助?哪些是违规求助? 3141926
关于积分的说明 9444841
捐赠科研通 2843331
什么是DOI,文献DOI怎么找? 1562830
邀请新用户注册赠送积分活动 731326
科研通“疑难数据库(出版商)”最低求助积分说明 718524