Classification algorithm for underwater surface cracks in hydroelectric dams

水力发电 水下 计算机科学 地质学 算法 海洋工程 工程类 电气工程 海洋学
作者
Homer H. Chen,Jin Qian,Long Peng,Zhu Jian-ying,Siquan Zhu,Xinyu Li,Pengfei Cao,Pengfei Shi
标识
DOI:10.1117/12.3015336
摘要

Hydroelectric dams have a vital role to play in renewable energy and water resources, and ensuring the safety and structural integrity of these dams is crucial. Cracks are a major disease hazard threatening the safety of dams, usually originating on the surface of the dam and continuously extending inwards under the action of hydraulic splitting. Timely and accurately detecting and identifying dam surface cracks is important for maintaining dam safety. However, due to the complexity of the underwater environment and the diversity of dam surface cracks, manual observation methods are time-consuming and laborious to classify underwater surface crack images of dams, and the existing methods have low recognition accuracy when used for the crack classification task. For this reason, this paper proposes an algorithm for classifying underwater surface cracks in hydroelectric dams, which classifies the cracks extracted from the image segmentation model of underwater cracks in hydroelectric dams with the help of an improved RepVGG network. A CBAM attention mechanism module is inserted into the RepVGG feature extraction network to extract a more effective feature representation. Due to the imbalance problem of data samples, the class balancing loss function of IB Loss is introduced to achieve class balancing. The experimental results show that for different kinds of cracks, the accuracy of the constructed algorithms is higher than the classical image classification algorithms, and the average classification accuracy of the network is improved by 2.06% compared to the original RepVGG algorithm, which is improved compared to all other traditional classification networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yyao发布了新的文献求助30
1秒前
白潇潇发布了新的文献求助10
1秒前
Owen应助谨言采纳,获得10
2秒前
BDMAXPK发布了新的文献求助10
2秒前
3秒前
3秒前
大轩发布了新的文献求助10
3秒前
榜一大哥的负担完成签到 ,获得积分10
6秒前
科研通AI2S应助糖豆采纳,获得10
10秒前
10秒前
熱風完成签到 ,获得积分10
13秒前
柯一一应助Liucky采纳,获得10
13秒前
14秒前
科目三应助高跟鞋陈煋采纳,获得10
14秒前
彩色夜阑完成签到,获得积分10
14秒前
搜集达人应助果子采纳,获得10
14秒前
南天发布了新的文献求助30
15秒前
爆米花应助Mingtiaoxiyue采纳,获得30
15秒前
涛声依旧完成签到,获得积分10
17秒前
S.S.N完成签到 ,获得积分10
19秒前
19秒前
26秒前
27秒前
情怀应助Cici采纳,获得10
29秒前
星辰大海应助WD采纳,获得10
30秒前
果子发布了新的文献求助10
31秒前
32秒前
科目三应助糊涂的猎豹采纳,获得10
35秒前
36秒前
风清扬应助清脆的灵煌采纳,获得30
36秒前
思源应助美好斓采纳,获得30
38秒前
成功应助hkh采纳,获得10
38秒前
酷波er应助信仰阳光快乐采纳,获得10
39秒前
Tong完成签到,获得积分10
40秒前
香蕉觅云应助克林沙星采纳,获得10
40秒前
田様应助孙成成采纳,获得10
40秒前
一把过发布了新的文献求助10
41秒前
新嘟发布了新的文献求助10
42秒前
Owen应助12采纳,获得10
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975610
求助须知:如何正确求助?哪些是违规求助? 3519986
关于积分的说明 11200337
捐赠科研通 3256337
什么是DOI,文献DOI怎么找? 1798246
邀请新用户注册赠送积分活动 877446
科研通“疑难数据库(出版商)”最低求助积分说明 806357