亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Classification algorithm for underwater surface cracks in hydroelectric dams

水力发电 水下 计算机科学 地质学 算法 海洋工程 工程类 电气工程 海洋学
作者
Homer H. Chen,Jin Qian,Long Peng,Zhu Jian-ying,Siquan Zhu,Xinyu Li,Pengfei Cao,Pengfei Shi
标识
DOI:10.1117/12.3015336
摘要

Hydroelectric dams have a vital role to play in renewable energy and water resources, and ensuring the safety and structural integrity of these dams is crucial. Cracks are a major disease hazard threatening the safety of dams, usually originating on the surface of the dam and continuously extending inwards under the action of hydraulic splitting. Timely and accurately detecting and identifying dam surface cracks is important for maintaining dam safety. However, due to the complexity of the underwater environment and the diversity of dam surface cracks, manual observation methods are time-consuming and laborious to classify underwater surface crack images of dams, and the existing methods have low recognition accuracy when used for the crack classification task. For this reason, this paper proposes an algorithm for classifying underwater surface cracks in hydroelectric dams, which classifies the cracks extracted from the image segmentation model of underwater cracks in hydroelectric dams with the help of an improved RepVGG network. A CBAM attention mechanism module is inserted into the RepVGG feature extraction network to extract a more effective feature representation. Due to the imbalance problem of data samples, the class balancing loss function of IB Loss is introduced to achieve class balancing. The experimental results show that for different kinds of cracks, the accuracy of the constructed algorithms is higher than the classical image classification algorithms, and the average classification accuracy of the network is improved by 2.06% compared to the original RepVGG algorithm, which is improved compared to all other traditional classification networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桥西小河完成签到 ,获得积分10
2秒前
Nicole完成签到,获得积分10
6秒前
传奇3应助科研通管家采纳,获得150
14秒前
烟花应助科研通管家采纳,获得10
14秒前
yys10l完成签到,获得积分10
17秒前
yys完成签到,获得积分10
30秒前
49秒前
白云发布了新的文献求助10
53秒前
57秒前
Nicole发布了新的文献求助10
1分钟前
悦耳冬萱完成签到 ,获得积分10
1分钟前
彩虹儿应助af采纳,获得10
1分钟前
HRB完成签到 ,获得积分10
1分钟前
Adi完成签到,获得积分10
2分钟前
3分钟前
af完成签到,获得积分10
3分钟前
11发布了新的文献求助10
3分钟前
所所应助weinaonao采纳,获得10
4分钟前
zsmj23完成签到 ,获得积分0
5分钟前
海风奕婕完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
小蘑菇应助科研通管家采纳,获得10
6分钟前
6分钟前
weinaonao发布了新的文献求助10
6分钟前
6分钟前
11完成签到,获得积分10
6分钟前
11发布了新的文献求助10
6分钟前
充电宝应助weinaonao采纳,获得10
7分钟前
7分钟前
孙国扬发布了新的文献求助10
7分钟前
11完成签到 ,获得积分10
7分钟前
hugeyoung完成签到,获得积分10
8分钟前
8分钟前
李健应助yukky采纳,获得30
9分钟前
白云完成签到,获得积分10
9分钟前
白云发布了新的文献求助10
9分钟前
9分钟前
yukky发布了新的文献求助30
9分钟前
9分钟前
weinaonao发布了新的文献求助10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926702
求助须知:如何正确求助?哪些是违规求助? 4196320
关于积分的说明 13032388
捐赠科研通 3968553
什么是DOI,文献DOI怎么找? 2175046
邀请新用户注册赠送积分活动 1192206
关于科研通互助平台的介绍 1102505