Classification algorithm for underwater surface cracks in hydroelectric dams

水力发电 水下 计算机科学 地质学 算法 海洋工程 工程类 电气工程 海洋学
作者
Homer H. Chen,Jin Qian,Long Peng,Zhu Jian-ying,Siquan Zhu,Xinyu Li,Pengfei Cao,Pengfei Shi
标识
DOI:10.1117/12.3015336
摘要

Hydroelectric dams have a vital role to play in renewable energy and water resources, and ensuring the safety and structural integrity of these dams is crucial. Cracks are a major disease hazard threatening the safety of dams, usually originating on the surface of the dam and continuously extending inwards under the action of hydraulic splitting. Timely and accurately detecting and identifying dam surface cracks is important for maintaining dam safety. However, due to the complexity of the underwater environment and the diversity of dam surface cracks, manual observation methods are time-consuming and laborious to classify underwater surface crack images of dams, and the existing methods have low recognition accuracy when used for the crack classification task. For this reason, this paper proposes an algorithm for classifying underwater surface cracks in hydroelectric dams, which classifies the cracks extracted from the image segmentation model of underwater cracks in hydroelectric dams with the help of an improved RepVGG network. A CBAM attention mechanism module is inserted into the RepVGG feature extraction network to extract a more effective feature representation. Due to the imbalance problem of data samples, the class balancing loss function of IB Loss is introduced to achieve class balancing. The experimental results show that for different kinds of cracks, the accuracy of the constructed algorithms is higher than the classical image classification algorithms, and the average classification accuracy of the network is improved by 2.06% compared to the original RepVGG algorithm, which is improved compared to all other traditional classification networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pauchiu完成签到,获得积分0
刚刚
可爱寄松发布了新的文献求助10
1秒前
陈进发布了新的文献求助10
1秒前
大模型应助开心的小熊采纳,获得30
1秒前
1秒前
橘猫123456发布了新的文献求助10
1秒前
阿九发布了新的文献求助10
1秒前
1秒前
经从梦发布了新的文献求助10
2秒前
ning发布了新的文献求助10
2秒前
3秒前
jiachun完成签到,获得积分10
3秒前
打打应助123采纳,获得10
3秒前
坎衡完成签到,获得积分10
3秒前
我爆冲发布了新的文献求助10
4秒前
W~舞完成签到,获得积分10
4秒前
范1完成签到,获得积分10
4秒前
4秒前
4秒前
大慈大悲观世音完成签到,获得积分10
4秒前
4秒前
舒适乐安发布了新的文献求助10
4秒前
4秒前
Www发布了新的文献求助10
4秒前
无奈世立发布了新的文献求助10
5秒前
5秒前
wang可爱额完成签到 ,获得积分10
5秒前
钻石棋发布了新的文献求助10
5秒前
KL完成签到,获得积分10
5秒前
quanjiazhi发布了新的文献求助10
6秒前
6秒前
大饿鱼发布了新的文献求助10
7秒前
标致若风应助HVEN采纳,获得30
7秒前
CodeCraft应助MOOTEA采纳,获得10
7秒前
小叶发布了新的文献求助10
7秒前
隐形曼青应助任性柜子采纳,获得10
8秒前
小橘子发布了新的文献求助10
8秒前
斯文宛秋完成签到,获得积分10
8秒前
可爱寄松完成签到,获得积分20
8秒前
11应助view采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258146
求助须知:如何正确求助?哪些是违规求助? 4420085
关于积分的说明 13759156
捐赠科研通 4293598
什么是DOI,文献DOI怎么找? 2356080
邀请新用户注册赠送积分活动 1352449
关于科研通互助平台的介绍 1313237