Python(编程语言)
计算机科学
人工智能
推论
分割
深度学习
线粒体
插件
图像(数学)
概括性
机器学习
模式识别(心理学)
生物
程序设计语言
细胞生物学
心理治疗师
心理学
作者
Ryan Conrad,Kedar Narayan
出处
期刊:Cell systems
[Elsevier]
日期:2023-01-01
卷期号:14 (1): 58-71.e5
被引量:10
标识
DOI:10.1016/j.cels.2022.12.006
摘要
Mitochondria are extremely pleomorphic organelles. Automatically annotating each one accurately and precisely in any 2D or volume electron microscopy (EM) image is an unsolved computational challenge. Current deep learning-based approaches train models on images that provide limited cellular contexts, precluding generality. To address this, we amassed a highly heterogeneous ∼1.5 × 106 image 2D unlabeled cellular EM dataset and segmented ∼135,000 mitochondrial instances therein. MitoNet, a model trained on these resources, performs well on challenging benchmarks and on previously unseen volume EM datasets containing tens of thousands of mitochondria. We release a Python package and napari plugin, empanada, to rapidly run inference, visualize, and proofread instance segmentations. A record of this paper's transparent peer review process is included in the supplemental information.
科研通智能强力驱动
Strongly Powered by AbleSci AI