Network Intrusion Detection Adversarial Attacks for LEO Constellation Networks Based on Deep Learning

对抗制 计算机科学 深度学习 星座 样品(材料) 人工智能 入侵检测系统 卫星 计算机安全 异常检测 机器学习 工程类 色谱法 天文 物理 航空航天工程 化学
作者
Yunhao Li,Weichuan Mo,Cong Li,Haiyang Wang,Jianwei He,Shanshan Hao,Hongyang Yan
出处
期刊:Lecture Notes in Computer Science 卷期号:: 51-65
标识
DOI:10.1007/978-3-031-23020-2_3
摘要

Low-Earth orbit satellite networks have received attention from academia and industry for their advantages in terms of wide coverage and low latency. Meantime deep learning can provide more accurate traffic anomaly detection and has become an important class of methods for LEO satellite network security. However, deep learning is susceptible to adversarial sample attacks, and the LEO satellite network system has not been investigated to find a framework for adversarial sample attacks and defence systems, which poses a potential risk to network communication security. In this paper, we design a framework to generate and defend against adversarial samples in real time. By capturing traffic from LEO satellites, it can generate traffic adversarial samples to detect whether malicious traffic classification models are vulnerable to attacks, and defense against adversarial sample attacks in real time. In this paper, a simple LEO satellite simulation platform is built to generate traffic adversarial samples using four classical adversarial sample generation methods, and a two-classification deep learning model is trained to determine the effectiveness of the attack and defence. Experiments show that the framework proposed in the paper can crawl traffic and perform self-attack and defence tests.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
一投就中完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
常常发布了新的文献求助10
7秒前
JSEILWQ完成签到 ,获得积分10
9秒前
ning_qing完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助30
16秒前
hitzwd完成签到,获得积分10
17秒前
23秒前
嬛嬛完成签到,获得积分10
25秒前
悟123完成签到 ,获得积分10
29秒前
33秒前
34秒前
奥斯卡完成签到,获得积分0
35秒前
Gambu完成签到,获得积分10
35秒前
愚者先生完成签到 ,获得积分10
36秒前
rh完成签到,获得积分10
40秒前
wbb完成签到 ,获得积分10
41秒前
合适靖儿完成签到 ,获得积分10
43秒前
50秒前
lzhgoashore完成签到,获得积分10
50秒前
50秒前
50秒前
50秒前
天天快乐应助科研通管家采纳,获得10
50秒前
50秒前
50秒前
zgrmws应助科研通管家采纳,获得10
50秒前
50秒前
zgrmws应助科研通管家采纳,获得10
50秒前
50秒前
zgrmws应助科研通管家采纳,获得10
50秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
50秒前
英姑应助科研通管家采纳,获得10
50秒前
50秒前
健忘鞋垫完成签到,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5796286
求助须知:如何正确求助?哪些是违规求助? 5775163
关于积分的说明 15491606
捐赠科研通 4923302
什么是DOI,文献DOI怎么找? 2650299
邀请新用户注册赠送积分活动 1597526
关于科研通互助平台的介绍 1552158