Feature-Guided Multitask Change Detection Network

变更检测 计算机科学 人工智能 特征(语言学) 模式识别(心理学) 分割 特征提取 编码器 目标检测 哲学 语言学 操作系统
作者
Yupeng Deng,Jiansheng Chen,Shiming Yi,Anzhi Yue,Yu Meng,Jingbo Chen,Yi Zhang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 9667-9679 被引量:8
标识
DOI:10.1109/jstars.2022.3215773
摘要

Change detection is the discovery of changes in remote sensing images of the same region obtained at different times. Change detection algorithms based on deep neural networks have significant advantages over traditional algorithms on high-resolution images. State-of-the-art (SOTA) change detection methods require sufficient labeled data to achieve good results, but semantic change detection requires not only binary change masks but also “from-to” change information, so large quantities of change labels are difficult to obtain. Achieving better semantic change detection accuracy with a limited number of labels remains an open problem in the remote sensing field. In this paper, we propose a feature-guided multitask change detection network (MCDnet). Feature guidance is characterized by three steps: 1) a multitask learning network that uses Siamese encoders to learn segmentation and change detection features simultaneously to realize mutual guidance between tasks is designed, 2) a fine-grained feature fusion module to integrate and enhance change information under the guidance of symmetrical change features is constructed, and 3) a contrastive loss function based on the a priori knowledge that the features of the changed regions are different while those of the unchanged regions are the same is proposed. The experimental results show that MCDnet achieves SOTA results on three public change detection datasets, including WHU-CD (F1: 94.46\IoU: 89.50), LEVIR (F1: 92.11\IoU: 85.37) and SECOND (mIoU: 73.1\Sek: 22.8). In addition, it is surprising that MCDnet is comparable to the SOTA models while using only 20% of the full training data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈发布了新的文献求助10
刚刚
不会发芽的土豆泥完成签到,获得积分10
1秒前
3秒前
3秒前
老程完成签到,获得积分10
3秒前
小房子完成签到,获得积分10
3秒前
谛听不听完成签到 ,获得积分10
5秒前
5秒前
Avery发布了新的文献求助10
6秒前
feifanyin完成签到,获得积分10
6秒前
6秒前
6秒前
杨旺发布了新的文献求助10
7秒前
sunny完成签到 ,获得积分10
7秒前
ck关闭了ck文献求助
8秒前
Majoe完成签到,获得积分10
9秒前
9秒前
高大的雁桃完成签到 ,获得积分10
10秒前
领导范儿应助布丁采纳,获得10
11秒前
11秒前
科研通AI6应助Avery采纳,获得10
12秒前
科研通AI6应助Avery采纳,获得10
12秒前
桐桐应助Avery采纳,获得10
12秒前
爆米花应助Avery采纳,获得10
12秒前
Orange应助Avery采纳,获得10
12秒前
丘比特应助Avery采纳,获得10
12秒前
李健的小迷弟应助Avery采纳,获得10
12秒前
斯文败类应助Avery采纳,获得10
12秒前
完美世界应助Avery采纳,获得10
12秒前
我是老大应助Avery采纳,获得10
12秒前
wrx完成签到 ,获得积分10
12秒前
13秒前
feifanyin发布了新的文献求助30
14秒前
wei发布了新的文献求助10
14秒前
swy完成签到 ,获得积分10
15秒前
今后应助有怀采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
JamesPei应助可靠飞飞采纳,获得10
17秒前
ting完成签到,获得积分10
17秒前
zhang17732207429完成签到,获得积分10
18秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620844
求助须知:如何正确求助?哪些是违规求助? 4705469
关于积分的说明 14932123
捐赠科研通 4763548
什么是DOI,文献DOI怎么找? 2551284
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474712