Feature-Guided Multitask Change Detection Network

变更检测 计算机科学 人工智能 特征(语言学) 模式识别(心理学) 分割 特征提取 编码器 目标检测 哲学 语言学 操作系统
作者
Yupeng Deng,Jiansheng Chen,Shiming Yi,Anzhi Yue,Yu Meng,Jingbo Chen,Yi Zhang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 9667-9679 被引量:8
标识
DOI:10.1109/jstars.2022.3215773
摘要

Change detection is the discovery of changes in remote sensing images of the same region obtained at different times. Change detection algorithms based on deep neural networks have significant advantages over traditional algorithms on high-resolution images. State-of-the-art (SOTA) change detection methods require sufficient labeled data to achieve good results, but semantic change detection requires not only binary change masks but also “from-to” change information, so large quantities of change labels are difficult to obtain. Achieving better semantic change detection accuracy with a limited number of labels remains an open problem in the remote sensing field. In this paper, we propose a feature-guided multitask change detection network (MCDnet). Feature guidance is characterized by three steps: 1) a multitask learning network that uses Siamese encoders to learn segmentation and change detection features simultaneously to realize mutual guidance between tasks is designed, 2) a fine-grained feature fusion module to integrate and enhance change information under the guidance of symmetrical change features is constructed, and 3) a contrastive loss function based on the a priori knowledge that the features of the changed regions are different while those of the unchanged regions are the same is proposed. The experimental results show that MCDnet achieves SOTA results on three public change detection datasets, including WHU-CD (F1: 94.46\IoU: 89.50), LEVIR (F1: 92.11\IoU: 85.37) and SECOND (mIoU: 73.1\Sek: 22.8). In addition, it is surprising that MCDnet is comparable to the SOTA models while using only 20% of the full training data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助LTY采纳,获得10
刚刚
2秒前
2秒前
香蕉觅云应助大力的无声采纳,获得10
4秒前
天天快乐应助猪猪hero采纳,获得10
4秒前
所所应助mr采纳,获得10
4秒前
7秒前
彻底完成签到,获得积分10
7秒前
小马甲应助踏实的小兔子采纳,获得10
7秒前
斯文的寒风应助酷酷问夏采纳,获得20
7秒前
7秒前
8秒前
曾经小伙发布了新的文献求助10
8秒前
9秒前
在水一方应助Nfx采纳,获得10
9秒前
xin完成签到,获得积分10
10秒前
山水之乐发布了新的文献求助10
10秒前
既白发布了新的文献求助10
11秒前
zq吃芒果发布了新的文献求助10
11秒前
喜喜发布了新的文献求助10
12秒前
FFF发布了新的文献求助10
13秒前
李健应助土豪的鼠标采纳,获得10
13秒前
从容襄完成签到,获得积分10
15秒前
丘比特应助狮子清明尊采纳,获得10
16秒前
无花果应助Ay采纳,获得10
17秒前
yy完成签到,获得积分20
17秒前
cdu应助coco采纳,获得200
21秒前
朴素的海云完成签到,获得积分20
21秒前
陈秋红完成签到,获得积分10
21秒前
张秋雨发布了新的文献求助10
23秒前
希望天下0贩的0应助ywqu采纳,获得10
24秒前
25秒前
慕青应助lvsehx采纳,获得10
26秒前
内向映天完成签到 ,获得积分10
31秒前
slx发布了新的文献求助10
31秒前
song完成签到 ,获得积分10
32秒前
32秒前
33秒前
33秒前
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745792
求助须知:如何正确求助?哪些是违规求助? 3288744
关于积分的说明 10060460
捐赠科研通 3004942
什么是DOI,文献DOI怎么找? 1649984
邀请新用户注册赠送积分活动 785662
科研通“疑难数据库(出版商)”最低求助积分说明 751204