Feature-Guided Multitask Change Detection Network

变更检测 计算机科学 人工智能 特征(语言学) 模式识别(心理学) 分割 特征提取 编码器 目标检测 哲学 语言学 操作系统
作者
Yupeng Deng,Jiansheng Chen,Shiming Yi,Anzhi Yue,Yu Meng,Jingbo Chen,Yi Zhang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 9667-9679 被引量:8
标识
DOI:10.1109/jstars.2022.3215773
摘要

Change detection is the discovery of changes in remote sensing images of the same region obtained at different times. Change detection algorithms based on deep neural networks have significant advantages over traditional algorithms on high-resolution images. State-of-the-art (SOTA) change detection methods require sufficient labeled data to achieve good results, but semantic change detection requires not only binary change masks but also “from-to” change information, so large quantities of change labels are difficult to obtain. Achieving better semantic change detection accuracy with a limited number of labels remains an open problem in the remote sensing field. In this paper, we propose a feature-guided multitask change detection network (MCDnet). Feature guidance is characterized by three steps: 1) a multitask learning network that uses Siamese encoders to learn segmentation and change detection features simultaneously to realize mutual guidance between tasks is designed, 2) a fine-grained feature fusion module to integrate and enhance change information under the guidance of symmetrical change features is constructed, and 3) a contrastive loss function based on the a priori knowledge that the features of the changed regions are different while those of the unchanged regions are the same is proposed. The experimental results show that MCDnet achieves SOTA results on three public change detection datasets, including WHU-CD (F1: 94.46\IoU: 89.50), LEVIR (F1: 92.11\IoU: 85.37) and SECOND (mIoU: 73.1\Sek: 22.8). In addition, it is surprising that MCDnet is comparable to the SOTA models while using only 20% of the full training data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助WANG.采纳,获得10
1秒前
dk完成签到,获得积分20
1秒前
1秒前
Wjh完成签到,获得积分10
2秒前
wanci应助随想采纳,获得10
2秒前
久桃完成签到,获得积分10
2秒前
星际帅帅完成签到,获得积分10
2秒前
山西球迷发布了新的文献求助10
2秒前
甜甜弘文发布了新的文献求助10
3秒前
3秒前
xixi发布了新的文献求助10
3秒前
4秒前
Lv发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
Owen应助菠萝李采纳,获得10
5秒前
5秒前
俞跃完成签到,获得积分10
5秒前
知不知发布了新的文献求助10
5秒前
natmed应助milka采纳,获得20
5秒前
黄义发布了新的文献求助10
5秒前
xu完成签到,获得积分10
6秒前
Inory007完成签到,获得积分10
6秒前
tianmafei发布了新的文献求助10
6秒前
7秒前
7秒前
Owen应助盛欢采纳,获得10
8秒前
Nano完成签到,获得积分10
8秒前
9秒前
SciGPT应助速速來電采纳,获得10
9秒前
新乔完成签到,获得积分10
9秒前
旺旺碎冰冰完成签到,获得积分10
9秒前
黄嘉慧完成签到 ,获得积分10
9秒前
甜甜弘文完成签到,获得积分20
10秒前
寒冷的沛珊完成签到,获得积分10
10秒前
俏皮麦片完成签到,获得积分10
10秒前
11秒前
RFZTSYDH完成签到,获得积分10
11秒前
baocq发布了新的文献求助10
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483374
求助须知:如何正确求助?哪些是违规求助? 4584081
关于积分的说明 14394500
捐赠科研通 4513704
什么是DOI,文献DOI怎么找? 2473645
邀请新用户注册赠送积分活动 1459635
关于科研通互助平台的介绍 1433108