Feature-Guided Multitask Change Detection Network

变更检测 计算机科学 人工智能 特征(语言学) 模式识别(心理学) 分割 特征提取 编码器 目标检测 哲学 语言学 操作系统
作者
Yupeng Deng,Jiansheng Chen,Shiming Yi,Anzhi Yue,Yu Meng,Jingbo Chen,Yi Zhang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 9667-9679 被引量:8
标识
DOI:10.1109/jstars.2022.3215773
摘要

Change detection is the discovery of changes in remote sensing images of the same region obtained at different times. Change detection algorithms based on deep neural networks have significant advantages over traditional algorithms on high-resolution images. State-of-the-art (SOTA) change detection methods require sufficient labeled data to achieve good results, but semantic change detection requires not only binary change masks but also “from-to” change information, so large quantities of change labels are difficult to obtain. Achieving better semantic change detection accuracy with a limited number of labels remains an open problem in the remote sensing field. In this paper, we propose a feature-guided multitask change detection network (MCDnet). Feature guidance is characterized by three steps: 1) a multitask learning network that uses Siamese encoders to learn segmentation and change detection features simultaneously to realize mutual guidance between tasks is designed, 2) a fine-grained feature fusion module to integrate and enhance change information under the guidance of symmetrical change features is constructed, and 3) a contrastive loss function based on the a priori knowledge that the features of the changed regions are different while those of the unchanged regions are the same is proposed. The experimental results show that MCDnet achieves SOTA results on three public change detection datasets, including WHU-CD (F1: 94.46\IoU: 89.50), LEVIR (F1: 92.11\IoU: 85.37) and SECOND (mIoU: 73.1\Sek: 22.8). In addition, it is surprising that MCDnet is comparable to the SOTA models while using only 20% of the full training data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
852应助菜鸟jie采纳,获得10
2秒前
2秒前
清枫完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
李思发布了新的文献求助10
4秒前
受伤绿柏发布了新的文献求助10
5秒前
体贴怜翠完成签到,获得积分10
5秒前
AAAAA完成签到,获得积分20
6秒前
7秒前
chuh21发布了新的文献求助10
7秒前
8秒前
昌昌昌发布了新的文献求助10
8秒前
大模型应助peanut采纳,获得10
9秒前
9秒前
Eins完成签到 ,获得积分10
10秒前
10秒前
胡研发布了新的文献求助10
10秒前
文文完成签到 ,获得积分10
11秒前
11秒前
999eichyy完成签到,获得积分10
11秒前
AAAAA发布了新的文献求助10
11秒前
12秒前
研友_VZG7GZ应助Tumbleweed668采纳,获得10
12秒前
Hello应助Tumbleweed668采纳,获得10
12秒前
科研通AI2S应助Tumbleweed668采纳,获得10
12秒前
科研通AI2S应助Tumbleweed668采纳,获得10
12秒前
星辰大海应助Tumbleweed668采纳,获得10
12秒前
科研通AI2S应助Tumbleweed668采纳,获得10
12秒前
完美世界应助Tumbleweed668采纳,获得10
12秒前
情怀应助Tumbleweed668采纳,获得10
12秒前
科研通AI2S应助Tumbleweed668采纳,获得10
12秒前
科研通AI2S应助Tumbleweed668采纳,获得10
12秒前
13秒前
受伤绿柏完成签到,获得积分20
13秒前
Dream完成签到,获得积分10
13秒前
万能图书馆应助苏丽娜采纳,获得10
14秒前
这种发布了新的文献求助10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310804
求助须知:如何正确求助?哪些是违规求助? 2943601
关于积分的说明 8515800
捐赠科研通 2618991
什么是DOI,文献DOI怎么找? 1431697
科研通“疑难数据库(出版商)”最低求助积分说明 664472
邀请新用户注册赠送积分活动 649732