Feature-Guided Multitask Change Detection Network

变更检测 计算机科学 人工智能 特征(语言学) 模式识别(心理学) 分割 特征提取 编码器 目标检测 哲学 语言学 操作系统
作者
Yupeng Deng,Jiansheng Chen,Shiming Yi,Anzhi Yue,Yu Meng,Jingbo Chen,Yi Zhang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 9667-9679 被引量:8
标识
DOI:10.1109/jstars.2022.3215773
摘要

Change detection is the discovery of changes in remote sensing images of the same region obtained at different times. Change detection algorithms based on deep neural networks have significant advantages over traditional algorithms on high-resolution images. State-of-the-art (SOTA) change detection methods require sufficient labeled data to achieve good results, but semantic change detection requires not only binary change masks but also “from-to” change information, so large quantities of change labels are difficult to obtain. Achieving better semantic change detection accuracy with a limited number of labels remains an open problem in the remote sensing field. In this paper, we propose a feature-guided multitask change detection network (MCDnet). Feature guidance is characterized by three steps: 1) a multitask learning network that uses Siamese encoders to learn segmentation and change detection features simultaneously to realize mutual guidance between tasks is designed, 2) a fine-grained feature fusion module to integrate and enhance change information under the guidance of symmetrical change features is constructed, and 3) a contrastive loss function based on the a priori knowledge that the features of the changed regions are different while those of the unchanged regions are the same is proposed. The experimental results show that MCDnet achieves SOTA results on three public change detection datasets, including WHU-CD (F1: 94.46\IoU: 89.50), LEVIR (F1: 92.11\IoU: 85.37) and SECOND (mIoU: 73.1\Sek: 22.8). In addition, it is surprising that MCDnet is comparable to the SOTA models while using only 20% of the full training data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助科研通管家采纳,获得10
刚刚
今后应助科研通管家采纳,获得10
刚刚
刚刚
流浪发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
3秒前
lilili发布了新的文献求助10
4秒前
仁爱千亦发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
善学以致用应助SDSD采纳,获得200
6秒前
12完成签到,获得积分10
6秒前
7秒前
大地完成签到,获得积分10
7秒前
8秒前
乐乐应助1123采纳,获得10
8秒前
江南完成签到,获得积分10
8秒前
谦谦神棍发布了新的文献求助10
9秒前
老北京发布了新的文献求助10
10秒前
yo一天发布了新的文献求助10
12秒前
12秒前
流浪完成签到,获得积分10
13秒前
Sonal发布了新的文献求助10
14秒前
思源应助仁爱千亦采纳,获得10
14秒前
乐乐应助ZCX采纳,获得30
14秒前
zhaozhao完成签到 ,获得积分10
15秒前
15秒前
33号先生发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
英俊的铭应助哆发文章啦采纳,获得10
19秒前
朝朝暮夕完成签到 ,获得积分10
19秒前
Jasper应助glycine采纳,获得10
20秒前
1123发布了新的文献求助10
20秒前
化学天空完成签到,获得积分10
21秒前
21秒前
23秒前
zz发布了新的文献求助10
25秒前
小小怪下士应助从容从灵采纳,获得30
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594261
求助须知:如何正确求助?哪些是违规求助? 4679954
关于积分的说明 14812329
捐赠科研通 4646568
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502822
关于科研通互助平台的介绍 1469497