Feature-Guided Multitask Change Detection Network

变更检测 计算机科学 人工智能 特征(语言学) 模式识别(心理学) 分割 特征提取 编码器 目标检测 语言学 操作系统 哲学
作者
Yupeng Deng,Jiansheng Chen,Shiming Yi,Anzhi Yue,Yu Meng,Jingbo Chen,Yi Zhang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 9667-9679 被引量:8
标识
DOI:10.1109/jstars.2022.3215773
摘要

Change detection is the discovery of changes in remote sensing images of the same region obtained at different times. Change detection algorithms based on deep neural networks have significant advantages over traditional algorithms on high-resolution images. State-of-the-art (SOTA) change detection methods require sufficient labeled data to achieve good results, but semantic change detection requires not only binary change masks but also “from-to” change information, so large quantities of change labels are difficult to obtain. Achieving better semantic change detection accuracy with a limited number of labels remains an open problem in the remote sensing field. In this paper, we propose a feature-guided multitask change detection network (MCDnet). Feature guidance is characterized by three steps: 1) a multitask learning network that uses Siamese encoders to learn segmentation and change detection features simultaneously to realize mutual guidance between tasks is designed, 2) a fine-grained feature fusion module to integrate and enhance change information under the guidance of symmetrical change features is constructed, and 3) a contrastive loss function based on the a priori knowledge that the features of the changed regions are different while those of the unchanged regions are the same is proposed. The experimental results show that MCDnet achieves SOTA results on three public change detection datasets, including WHU-CD (F1: 94.46\IoU: 89.50), LEVIR (F1: 92.11\IoU: 85.37) and SECOND (mIoU: 73.1\Sek: 22.8). In addition, it is surprising that MCDnet is comparable to the SOTA models while using only 20% of the full training data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子车语雪发布了新的文献求助30
刚刚
李欣洳完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
宋小雅发布了新的文献求助10
1秒前
segovia_tju发布了新的文献求助10
3秒前
3秒前
深情安青应助xxx采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
向黎发布了新的文献求助10
3秒前
4秒前
neversay4ever发布了新的文献求助10
4秒前
tyq发布了新的文献求助10
5秒前
盒子发布了新的文献求助10
5秒前
可爱的函函应助棋士采纳,获得10
5秒前
5秒前
6秒前
哈哈完成签到,获得积分10
7秒前
屈屈发布了新的文献求助10
7秒前
7秒前
李睿发布了新的文献求助10
7秒前
明天天气真好完成签到,获得积分10
7秒前
8秒前
Bellona发布了新的文献求助10
9秒前
9秒前
ftnq完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
11秒前
小小K发布了新的文献求助10
11秒前
Owen应助wjw采纳,获得10
11秒前
轻松囧发布了新的文献求助10
11秒前
556发布了新的文献求助10
11秒前
12秒前
白白白完成签到,获得积分10
12秒前
segovia_tju完成签到,获得积分10
12秒前
无私小凡完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711286
求助须知:如何正确求助?哪些是违规求助? 5202990
关于积分的说明 15263800
捐赠科研通 4863647
什么是DOI,文献DOI怎么找? 2610818
邀请新用户注册赠送积分活动 1561136
关于科研通互助平台的介绍 1518616