清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Feature-Guided Multitask Change Detection Network

变更检测 计算机科学 人工智能 特征(语言学) 模式识别(心理学) 分割 特征提取 编码器 目标检测 哲学 语言学 操作系统
作者
Yupeng Deng,Jiansheng Chen,Shiming Yi,Anzhi Yue,Yu Meng,Jingbo Chen,Yi Zhang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 9667-9679 被引量:8
标识
DOI:10.1109/jstars.2022.3215773
摘要

Change detection is the discovery of changes in remote sensing images of the same region obtained at different times. Change detection algorithms based on deep neural networks have significant advantages over traditional algorithms on high-resolution images. State-of-the-art (SOTA) change detection methods require sufficient labeled data to achieve good results, but semantic change detection requires not only binary change masks but also “from-to” change information, so large quantities of change labels are difficult to obtain. Achieving better semantic change detection accuracy with a limited number of labels remains an open problem in the remote sensing field. In this paper, we propose a feature-guided multitask change detection network (MCDnet). Feature guidance is characterized by three steps: 1) a multitask learning network that uses Siamese encoders to learn segmentation and change detection features simultaneously to realize mutual guidance between tasks is designed, 2) a fine-grained feature fusion module to integrate and enhance change information under the guidance of symmetrical change features is constructed, and 3) a contrastive loss function based on the a priori knowledge that the features of the changed regions are different while those of the unchanged regions are the same is proposed. The experimental results show that MCDnet achieves SOTA results on three public change detection datasets, including WHU-CD (F1: 94.46\IoU: 89.50), LEVIR (F1: 92.11\IoU: 85.37) and SECOND (mIoU: 73.1\Sek: 22.8). In addition, it is surprising that MCDnet is comparable to the SOTA models while using only 20% of the full training data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gengsumin完成签到,获得积分10
1秒前
燕燕于飞完成签到,获得积分10
7秒前
雪山飞龙完成签到,获得积分10
33秒前
背后的雪巧完成签到,获得积分10
34秒前
wtbxsjy完成签到,获得积分10
47秒前
kkkkk发布了新的文献求助650
1分钟前
1437594843完成签到 ,获得积分10
1分钟前
1分钟前
悠树里完成签到,获得积分10
1分钟前
健康的魔镜完成签到 ,获得积分10
1分钟前
1分钟前
戴云溥应助科研通管家采纳,获得20
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
vbnn完成签到 ,获得积分10
1分钟前
1分钟前
激动的55完成签到 ,获得积分10
1分钟前
JESI完成签到,获得积分10
1分钟前
jesi完成签到,获得积分10
2分钟前
2分钟前
MGraceLi_sci完成签到,获得积分10
2分钟前
彩色的芷容完成签到 ,获得积分10
2分钟前
舒适的淇完成签到,获得积分10
2分钟前
qq完成签到 ,获得积分10
2分钟前
庄海棠完成签到 ,获得积分10
2分钟前
2分钟前
77wlr完成签到,获得积分10
2分钟前
2分钟前
3分钟前
冷静的尔竹完成签到,获得积分10
3分钟前
dwz发布了新的文献求助10
3分钟前
creep2020完成签到,获得积分10
3分钟前
喜悦的唇彩完成签到,获得积分10
3分钟前
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
小糊涂仙儿完成签到 ,获得积分10
4分钟前
欣然发布了新的文献求助10
4分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590635
求助须知:如何正确求助?哪些是违规求助? 4675771
关于积分的说明 14795410
捐赠科研通 4634104
什么是DOI,文献DOI怎么找? 2532871
邀请新用户注册赠送积分活动 1501349
关于科研通互助平台的介绍 1468741