2D-CuPd nanozyme overcome tamoxifen resistance in breast cancer by regulating the PI3K/AKT/mTOR pathway

PI3K/AKT/mTOR通路 三苯氧胺 癌症研究 蛋白激酶B 乳腺癌 药理学 癌症 医学 化学 信号转导 生物 内科学 细胞生物学
作者
Wenwei Jiang,Suqin Zhong,Ziying Chen,Jieying Qian,Xiaowan Huang,Hao Zhang,Longping Wen,Yunjiao Zhang,Guangyu Yao
出处
期刊:Biomaterials [Elsevier]
卷期号:294: 121986-121986 被引量:14
标识
DOI:10.1016/j.biomaterials.2022.121986
摘要

Tamoxifen is the most commonly used treatment for estrogen-receptor (ER) positive breast cancer patients, but its efficacy is severely hampered by resistance. PI3K/AKT/mTOR pathway inhibition was proven to augment the benefit of endocrine therapy and exhibited potential for reversing tamoxifen-induced resistance. However, the vast majority of PI3K inhibitors currently approved for clinical use are unsatisfactory in terms of safety and efficacy. We developed two-dimensional CuPd (2D-CuPd) nanosheets with oxidase and peroxidase nanozyme activities to offer a novel solution to inhibit the activity of the PI3K/AKT/mTOR pathway. 2D-CuPd exhibit superior dual nanozyme activities converting hydrogen peroxide accumulated in drug-resistant cells into more lethal hydroxyl radicals while compensating for the insufficient superoxide anion produced by tamoxifen. The potential clinical utility was further demonstrated in an orthotopically implanted tamoxifen-resistant PDX breast cancer model. Our results reveal a novel nanozyme ROS-mediated protein mechanism for the regulation of the PI3K subunit, illustrate the cellular pathways through which increased p85β protein expression contributes to tamoxifen resistance, and reveal p85β protein as a potential therapeutic target for overcoming tamoxifen resistance. 2D-CuPd is the first reported nanomaterial capable of degrading PI3K subunits, and its high performance combined with further materials engineering may lead to the development of nanozyme-based tumor catalytic therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
殊荣完成签到,获得积分10
1秒前
猩猩发布了新的文献求助10
2秒前
踏实的白羊完成签到,获得积分10
3秒前
李爱国应助陆绮梅采纳,获得10
4秒前
4秒前
Peng完成签到 ,获得积分10
4秒前
cocolu应助温暖砖头采纳,获得10
5秒前
活泼宛海关注了科研通微信公众号
7秒前
Karma发布了新的文献求助30
8秒前
9秒前
重景完成签到 ,获得积分10
9秒前
深情安青应助节节高采纳,获得10
9秒前
9秒前
10秒前
11秒前
12秒前
12秒前
13秒前
13秒前
wy完成签到,获得积分10
14秒前
漂亮幻莲发布了新的文献求助10
14秒前
15秒前
15秒前
Orange应助hhan采纳,获得10
15秒前
彭于晏应助尊敬的非笑采纳,获得10
16秒前
16秒前
17秒前
彭于晏应助zyp采纳,获得10
18秒前
李姓人完成签到,获得积分10
19秒前
19秒前
节节高完成签到,获得积分20
19秒前
makabaka发布了新的文献求助10
19秒前
bastien发布了新的文献求助10
21秒前
21秒前
Ganlou应助jewel采纳,获得10
21秒前
GuSiwen完成签到,获得积分10
22秒前
cuber完成签到 ,获得积分10
22秒前
dyfsj发布了新的文献求助10
23秒前
节节高发布了新的文献求助10
24秒前
iris发布了新的文献求助10
25秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262508
求助须知:如何正确求助?哪些是违规求助? 2903167
关于积分的说明 8324251
捐赠科研通 2573213
什么是DOI,文献DOI怎么找? 1398106
科研通“疑难数据库(出版商)”最低求助积分说明 654018
邀请新用户注册赠送积分活动 632623