亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CPTV: Classification by tracking of carotid plaque in ultrasound videos

计算机科学 人工智能 超声波 计算机视觉 易损斑块 模式识别(心理学) 跟踪(教育) Echo(通信协议) 编码器 放射科 医学 病理 心理学 教育学 操作系统 计算机网络
作者
Jiang Xie,Ying Li,Xiaochun Xu,Jinzhu Wei,Haozhe Li,Shuo Wu,Haibing Chen
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:104: 102175-102175 被引量:8
标识
DOI:10.1016/j.compmedimag.2022.102175
摘要

The risk assessment of carotid plaque is strongly related to the plaque echo status in ultrasound. However, the echo classification of carotid plaques based on ultrasound remains challenging due to the changes in plaque shape and semantics, along with the complex vascular environment. This study proposed a framework for Classification of Plaque by Tracking Videos (CPTV). To the best of our knowledge, this is the first study on plaque classification by tracking ultrasound video rather than a sonographic view, which achieves accurate localization and stable echo classification. In the tracking task, Multi-scale Decoupling Tracking (MDTrack) module including Multi-scale Dilated Encoder (MDE) and Internal-Exterior Feature Decoupling (IEFD) was proposed to solve the problems caused by shape and semantic variations to achieve accurate plaque localization in ultrasound. In the classification task, the Tracking-assisted 3D Attention (T3D-Attention) module included recombination and 3D-Attention extracted plaque features and echo-related features in the vascular environment. The experiments demonstrated that the performance of CPTV is better than current mainstream tracking and classification methods, indicating that the tracking-assistance classification is a kind of enhancement method with high universality and stability in the plaque in ultrasound.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
2秒前
8秒前
8秒前
8秒前
胡美玲发布了新的文献求助10
13秒前
谷雨完成签到,获得积分10
15秒前
呵呵完成签到,获得积分10
16秒前
LC完成签到 ,获得积分10
17秒前
吉吉国王的跟班完成签到 ,获得积分10
28秒前
29秒前
健壮天玉完成签到,获得积分10
31秒前
35秒前
自信书文完成签到 ,获得积分10
36秒前
所所应助ss采纳,获得10
46秒前
赘婿应助谷雨采纳,获得10
48秒前
55秒前
56秒前
yc096vps完成签到,获得积分10
57秒前
爆米花应助arizaki7采纳,获得10
58秒前
领导范儿应助Nature_Science采纳,获得10
1分钟前
腼腆的若雁完成签到,获得积分10
1分钟前
1分钟前
Viiigo完成签到,获得积分10
1分钟前
科目三应助yang采纳,获得10
1分钟前
ylj发布了新的文献求助10
1分钟前
灵巧的蓝发布了新的文献求助10
1分钟前
1分钟前
nini完成签到,获得积分10
1分钟前
今后应助ylj采纳,获得10
1分钟前
1分钟前
yang发布了新的文献求助10
1分钟前
1分钟前
失眠的菠萝应助灵巧的蓝采纳,获得10
1分钟前
mmmmlll发布了新的文献求助10
1分钟前
健壮天玉发布了新的文献求助10
1分钟前
1分钟前
英姑应助1650989430采纳,获得10
1分钟前
外向太阳完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606551
求助须知:如何正确求助?哪些是违规求助? 4690934
关于积分的说明 14866623
捐赠科研通 4706603
什么是DOI,文献DOI怎么找? 2542754
邀请新用户注册赠送积分活动 1508160
关于科研通互助平台的介绍 1472276