甲状腺结节
分割
计算机科学
人工智能
模式识别(心理学)
结核(地质)
特征(语言学)
图像分割
Sørensen–骰子系数
卷积(计算机科学)
计算机视觉
甲状腺
人工神经网络
医学
生物
语言学
内科学
哲学
古生物学
作者
Hongyu Chen,Ming-An Yu,Cheng Chen,Kangneng Zhou,Siyu Qi,Yunqing Chen,Ruoxiu Xiao
标识
DOI:10.1016/j.compbiomed.2022.106514
摘要
Thyroid nodules, a common disease of endocrine system, have a probability of nearly 10% to turn into malignant nodules and thus pose a serious threat to health. Automatic segmentation of thyroid nodules is of great importance for clinicopathological diagnosis. This work proposes FDE-Net, a combined segmental frequency domain enhancement and dynamic scale cavity convolutional network for thyroid nodule segmentation. In FDE-Net, traditional image omics method is introduced to enhance the feature image in the segmented frequency domain. Such an approach reduces the influence of noise and strengthens the detail and contour information of the image. The proposed method introduces a cascade cross-scale attention module, which addresses the insensitivity of the network to the change in target scale by fusing the features of different receptive fields and improves the ability of the network to identify multiscale target regions. It repeatedly uses the high-dimensional feature image to improve segmentation accuracy in accordance with the simple structure of thyroid nodules. In this study, 1355 ultrasound images are used for training and testing. Quantitative evaluation results showed that the Dice coefficient of FDE-Net in thyroid nodule segmentation was 83.54%, which is better than other methods. Therefore, FDE-Net can enable the accurate and rapid segmentation of thyroid nodules.
科研通智能强力驱动
Strongly Powered by AbleSci AI