Effect of Surface Treatment on Performance and Internal Stacking Mode of Electrohydrodynamic Printed Graphene and Its Microsupercapacitor

石墨烯 材料科学 微电子 堆积 电流体力学 纳米技术 光电子学 电容 电场 电极 核磁共振 量子力学 物理 物理化学 化学
作者
Jinyao Zhong,Zhiqiang Fang,Dongxiang Luo,Honglong Ning,Tian Qiu,Muyun Li,Yuexin Yang,Xiao Yan Fu,Rihui Yao,Junbiao Peng
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (2): 3621-3632 被引量:1
标识
DOI:10.1021/acsami.2c18367
摘要

Microelectronic devices are developing rapidly in portability, wearability, and implantability. This puts forward an urgent requirement for the delicate deposition process of materials. Electrohydrodynamic printing has attracted academic and industrial attention in preparing ultrahigh-density microelectronic devices as a new noncontact, direct graphic, and low-loss thin film deposition process. In this work, a printed graphene with narrow line width is realized by combining the electrohydrodynamic printing and surface treatment. The line width of printed graphene on the hydrophobic treatment surface reduced from 80 to 28 μm. The resistivity decreased from 0.949 to 0.263 Ω·mm. Unexpectedly, hydrophobic treatment can effectively induce random stacking of electrohydrodynamic printed graphene, which avoids parallel stacking and agglomeration of graphene sheets. The performance of printed graphene is thus effectively improved. After optimization, a graphene planar supercapacitor with a printed line width of 28 μm is successfully obtained. Its capacitance can reach 5.39 mF/cm2 at 50 mV/s, which is twice higher than that of the untreated devices. The device maintains 84.7% capacitance after 5000 cycles. This work provides a reference for preparing microelectronic devices by ultrahigh precision printing and a new direction for optimizing two-dimensional material properties through stacking adjustment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yana发布了新的文献求助20
刚刚
yijiubingshi完成签到,获得积分10
1秒前
苏南完成签到 ,获得积分10
1秒前
冰激凌UP发布了新的文献求助10
1秒前
SCI发布了新的文献求助10
1秒前
CD发布了新的文献求助10
1秒前
2秒前
yan123发布了新的文献求助10
3秒前
3秒前
充电宝应助yyj采纳,获得10
3秒前
马静雨发布了新的文献求助10
3秒前
云游归尘发布了新的文献求助10
4秒前
5秒前
111发布了新的文献求助10
5秒前
寰宇完成签到,获得积分10
5秒前
5秒前
6秒前
花田雨桐发布了新的文献求助10
6秒前
6秒前
小马甲应助lieditongxu采纳,获得10
6秒前
Jenny应助yan123采纳,获得10
7秒前
狂野的以珊完成签到,获得积分10
7秒前
7秒前
a1oft发布了新的文献求助10
8秒前
8秒前
8秒前
笨笨的不斜完成签到,获得积分10
8秒前
xtqgyy发布了新的文献求助10
8秒前
9秒前
Cat完成签到,获得积分0
9秒前
科研小菜完成签到,获得积分10
10秒前
江南烟雨如笙完成签到,获得积分10
10秒前
10秒前
stt关闭了stt文献求助
10秒前
11秒前
yangang发布了新的文献求助10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
zhui发布了新的文献求助10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794