Kinematic parameters calibration of industrial robot based on RWS-PSO algorithm

粒子群优化 运动学 控制理论(社会学) 非线性系统 机器人 算法 校准 惯性 计算机科学 机器人校准 工业机器人 机器人运动学 数学 人工智能 移动机器人 统计 经典力学 物理 量子力学 控制(管理)
作者
Hang Li,Xiao‐Bing Hu,Xuejian Zhang,Shangyun Wei,Qingyi Luo
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:237 (14): 3210-3220 被引量:5
标识
DOI:10.1177/09544062221142697
摘要

The positioning accuracy of an industrial robot has a significant impact on its application in precision manufacturing, and it is necessary to calibrate robot kinematic parameters. Previous studies have established numerous nonlinear equations to solve the kinematic parameters, which are complicated and time consuming. A standard particle swarm optimization (PSO) algorithm is limited by long running time and low solution efficiency. Therefore, in this study, a dynamic particle swarm optimization algorithm based on roulette wheel selection (RWS-PSO) is proposed to realize the kinematic parameters calibration. First, a kinematics model is constructed using the standard Denavit-Hartenberg (D-H) method, and the theoretical and actual values of the spatial position of the robot endpoint are obtained via forward kinematics and a Laser Tracker, respectively. Next, the kinematic parameters calibration problem is transformed into a solution of a high-dimensional nonlinear equation using the proposed RWS-PSO algorithm. In the proposed RWS-PSO algorithm, the inertia factor is considered as linearly decreasing and the number of particles is selected by the roulette wheel selection (RWS) to improve its computational efficiency. The proposed RWS-PSO and standard PSO algorithms are compared based on various indices by simulation. The results reveal that the time cost of the RWS-PSO algorithm is much lower than that of the standard PSO algorithm on the basis of high precision and a reduced running time of approximately 53%. Finally, the kinematic parameter errors obtained by the two algorithms are compensated. According to the experimental results, the positioning accuracy of the robot in three ( x-, y-, and z-) directions is improved by 78%, 46%, and 67%, respectively, compared to that of before compensation, which proves that the RWS-PSO algorithm is effective and practical for kinematic parameters calibration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Soche发布了新的文献求助10
2秒前
4秒前
5秒前
楠楠2001发布了新的文献求助10
6秒前
图喵喵完成签到,获得积分10
6秒前
7秒前
爆米花应助孤巷的猫采纳,获得10
8秒前
8秒前
天蔚蓝发布了新的文献求助10
9秒前
10秒前
无花果应助hutong采纳,获得10
11秒前
11秒前
到家了完成签到,获得积分10
12秒前
合适的人类完成签到,获得积分10
13秒前
13秒前
14秒前
SciGPT应助一只小鲨鱼采纳,获得10
14秒前
14秒前
14秒前
WZH发布了新的文献求助30
14秒前
睡醒的尾椎骨完成签到,获得积分10
15秒前
LX完成签到,获得积分10
15秒前
到家了发布了新的文献求助10
16秒前
16秒前
aooky完成签到,获得积分10
16秒前
楠楠2001完成签到,获得积分10
17秒前
白樱恋曲发布了新的文献求助10
17秒前
jianning发布了新的文献求助10
17秒前
无私书雪发布了新的文献求助10
18秒前
淳之风发布了新的文献求助10
19秒前
QZ完成签到,获得积分10
19秒前
cfplhys完成签到,获得积分10
21秒前
WJJ完成签到,获得积分10
21秒前
22秒前
22秒前
搜集达人应助kkuang采纳,获得10
22秒前
微笑的涛应助孤巷的猫采纳,获得10
25秒前
香蕉觅云应助WJJ采纳,获得10
26秒前
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146022
求助须知:如何正确求助?哪些是违规求助? 2797382
关于积分的说明 7824093
捐赠科研通 2453743
什么是DOI,文献DOI怎么找? 1305846
科研通“疑难数据库(出版商)”最低求助积分说明 627593
版权声明 601491