Using machine‐learning algorithms to improve imputation in the medical expenditure panel survey

插补(统计学) 梯度升压 计算机科学 随机森林 医疗开支小组调查 支持向量机 回归 机器学习 线性回归 数据挖掘 统计 人工智能 计量经济学 算法 缺少数据 数学 医疗保健 经济 经济增长 健康保险
作者
Chandler McClellan,Emily M. Mitchell,Jerrod Anderson,Samuel H. Zuvekas
出处
期刊:Health Services Research [Wiley]
卷期号:58 (2): 423-432 被引量:3
标识
DOI:10.1111/1475-6773.14115
摘要

Abstract Objective To assess the feasibility of applying machine learning (ML) methods to imputation in the Medical Expenditure Panel Survey (MEPS). Data Sources All data come from the 2016–2017 MEPS. Study Design Currently, expenditures for medical encounters in the MEPS are imputed with a predictive mean matching (PMM) algorithm in which a linear regression model is used to predict expenditures for events with (donors) and without (recipients) data. Recipient events and donor events are then matched based on the smallest distance between predicted expenditures, and the donor event's expenditures are used as the recipient event's imputation. We replace linear regression algorithm in the PMM framework with ML methods to predict expenditures. We examine five alternatives to linear regression: Gradient Boosting, Random Forests, Extreme Random Forests, Deep Neural Networks, and a Stacked Ensemble approach. Additionally, we introduce an alternative matching scheme, which matches on a vector of predicted expenditures by sources of payment instead of a single total expenditure prediction to generate potentially superior matches. Data Collection Study data is derived from a large federal survey. Principal Findings ML algorithms perform better at both prediction and matching imputation than Ordinary Least Squares (OLS), the most common prediction algorithm used in PMM. On average, the Stacked Ensemble approach that combines all the ML algorithms performs best, improving expenditure prediction R 2 by 108% (0.156 points) and final imputation R 2 by 227% (0.397 points). Matching on a prediction vector also improves alignment of sources of payments between donor and recipient events. Conclusions ML algorithms and an alternative matching scheme improve the overall quality of expenditure PMM imputation in the MEPS. These methods may have additional value in other national surveys that currently rely on PMM or similar methods for imputation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
上官若男应助瓜瓜采纳,获得10
2秒前
羊咩咩完成签到 ,获得积分10
3秒前
zyt完成签到,获得积分10
3秒前
yrt发布了新的文献求助10
3秒前
tdtk发布了新的文献求助10
4秒前
科研通AI5应助222采纳,获得10
4秒前
林洛沁完成签到,获得积分10
5秒前
孟醒发布了新的文献求助10
7秒前
8秒前
李朝朝完成签到,获得积分10
9秒前
小马甲应助岁岁平安采纳,获得10
10秒前
tdtk完成签到,获得积分10
10秒前
洋洋发布了新的文献求助10
10秒前
10秒前
yrt完成签到,获得积分10
11秒前
LANzzy完成签到,获得积分10
12秒前
爆米花应助幽梦挽歌采纳,获得10
13秒前
图治完成签到,获得积分10
13秒前
777发布了新的文献求助10
14秒前
15秒前
SciGPT应助uuu采纳,获得10
15秒前
无限亦寒完成签到 ,获得积分10
16秒前
学生白发布了新的文献求助10
16秒前
石昊发布了新的文献求助10
17秒前
pigff完成签到,获得积分10
18秒前
19秒前
一一一发布了新的文献求助10
20秒前
21秒前
李月月发布了新的文献求助10
21秒前
双门洞发布了新的文献求助10
22秒前
222发布了新的文献求助10
23秒前
777完成签到,获得积分20
24秒前
SYLH应助清脆寒香采纳,获得10
24秒前
研友_VZG7GZ应助麦麦采纳,获得10
24秒前
微微发布了新的文献求助30
25秒前
健康的代芙完成签到,获得积分10
26秒前
tongtong完成签到,获得积分10
26秒前
hi应助777采纳,获得10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967654
求助须知:如何正确求助?哪些是违规求助? 3512812
关于积分的说明 11165110
捐赠科研通 3247884
什么是DOI,文献DOI怎么找? 1794027
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804528