Using machine‐learning algorithms to improve imputation in the medical expenditure panel survey

插补(统计学) 梯度升压 计算机科学 随机森林 医疗开支小组调查 支持向量机 回归 机器学习 线性回归 数据挖掘 统计 人工智能 计量经济学 算法 缺少数据 数学 医疗保健 经济 经济增长 健康保险
作者
Chandler McClellan,Emily M. Mitchell,Jerrod Anderson,Samuel H. Zuvekas
出处
期刊:Health Services Research [Wiley]
卷期号:58 (2): 423-432 被引量:3
标识
DOI:10.1111/1475-6773.14115
摘要

Abstract Objective To assess the feasibility of applying machine learning (ML) methods to imputation in the Medical Expenditure Panel Survey (MEPS). Data Sources All data come from the 2016–2017 MEPS. Study Design Currently, expenditures for medical encounters in the MEPS are imputed with a predictive mean matching (PMM) algorithm in which a linear regression model is used to predict expenditures for events with (donors) and without (recipients) data. Recipient events and donor events are then matched based on the smallest distance between predicted expenditures, and the donor event's expenditures are used as the recipient event's imputation. We replace linear regression algorithm in the PMM framework with ML methods to predict expenditures. We examine five alternatives to linear regression: Gradient Boosting, Random Forests, Extreme Random Forests, Deep Neural Networks, and a Stacked Ensemble approach. Additionally, we introduce an alternative matching scheme, which matches on a vector of predicted expenditures by sources of payment instead of a single total expenditure prediction to generate potentially superior matches. Data Collection Study data is derived from a large federal survey. Principal Findings ML algorithms perform better at both prediction and matching imputation than Ordinary Least Squares (OLS), the most common prediction algorithm used in PMM. On average, the Stacked Ensemble approach that combines all the ML algorithms performs best, improving expenditure prediction R 2 by 108% (0.156 points) and final imputation R 2 by 227% (0.397 points). Matching on a prediction vector also improves alignment of sources of payments between donor and recipient events. Conclusions ML algorithms and an alternative matching scheme improve the overall quality of expenditure PMM imputation in the MEPS. These methods may have additional value in other national surveys that currently rely on PMM or similar methods for imputation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清爽老九发布了新的文献求助30
2秒前
2秒前
斯文败类应助如意采纳,获得10
2秒前
Pannn完成签到,获得积分10
3秒前
3秒前
白千筹发布了新的文献求助10
4秒前
4秒前
5秒前
妮妮应助暴躁的初阳采纳,获得20
6秒前
隐形曼青应助SunGuangkai采纳,获得10
7秒前
7秒前
cc发布了新的文献求助10
8秒前
华仔完成签到,获得积分10
8秒前
9秒前
FashionBoy应助乌里羊采纳,获得10
9秒前
顾矜应助Dr_zsc采纳,获得10
10秒前
11秒前
顾矜应助霸王萝卜丝采纳,获得10
12秒前
雨城完成签到 ,获得积分10
12秒前
李健应助最幸运的988采纳,获得10
13秒前
半糖可乐发布了新的文献求助10
14秒前
14秒前
16秒前
17秒前
jjq完成签到,获得积分10
18秒前
19秒前
bin发布了新的文献求助10
19秒前
GG发布了新的文献求助10
20秒前
21秒前
SunGuangkai发布了新的文献求助10
21秒前
22秒前
277发布了新的文献求助10
23秒前
研友_8Wqq4n发布了新的文献求助10
23秒前
genandtal完成签到,获得积分10
23秒前
Cyy12355完成签到,获得积分10
24秒前
今后应助丁sir采纳,获得10
25秒前
含糊的寇完成签到,获得积分10
25秒前
浪里白条发布了新的文献求助20
25秒前
26秒前
汉堡包应助怡然万声采纳,获得10
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3443733
求助须知:如何正确求助?哪些是违规求助? 3039898
关于积分的说明 8978605
捐赠科研通 2728387
什么是DOI,文献DOI怎么找? 1496507
科研通“疑难数据库(出版商)”最低求助积分说明 691668
邀请新用户注册赠送积分活动 689213