Using machine‐learning algorithms to improve imputation in the medical expenditure panel survey

插补(统计学) 梯度升压 计算机科学 随机森林 医疗开支小组调查 支持向量机 回归 机器学习 线性回归 数据挖掘 统计 人工智能 计量经济学 算法 缺少数据 数学 医疗保健 经济 经济增长 健康保险
作者
Chandler McClellan,Emily M. Mitchell,Jerrod Anderson,Samuel H. Zuvekas
出处
期刊:Health Services Research [Wiley]
卷期号:58 (2): 423-432 被引量:3
标识
DOI:10.1111/1475-6773.14115
摘要

Abstract Objective To assess the feasibility of applying machine learning (ML) methods to imputation in the Medical Expenditure Panel Survey (MEPS). Data Sources All data come from the 2016–2017 MEPS. Study Design Currently, expenditures for medical encounters in the MEPS are imputed with a predictive mean matching (PMM) algorithm in which a linear regression model is used to predict expenditures for events with (donors) and without (recipients) data. Recipient events and donor events are then matched based on the smallest distance between predicted expenditures, and the donor event's expenditures are used as the recipient event's imputation. We replace linear regression algorithm in the PMM framework with ML methods to predict expenditures. We examine five alternatives to linear regression: Gradient Boosting, Random Forests, Extreme Random Forests, Deep Neural Networks, and a Stacked Ensemble approach. Additionally, we introduce an alternative matching scheme, which matches on a vector of predicted expenditures by sources of payment instead of a single total expenditure prediction to generate potentially superior matches. Data Collection Study data is derived from a large federal survey. Principal Findings ML algorithms perform better at both prediction and matching imputation than Ordinary Least Squares (OLS), the most common prediction algorithm used in PMM. On average, the Stacked Ensemble approach that combines all the ML algorithms performs best, improving expenditure prediction R 2 by 108% (0.156 points) and final imputation R 2 by 227% (0.397 points). Matching on a prediction vector also improves alignment of sources of payments between donor and recipient events. Conclusions ML algorithms and an alternative matching scheme improve the overall quality of expenditure PMM imputation in the MEPS. These methods may have additional value in other national surveys that currently rely on PMM or similar methods for imputation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyst发布了新的文献求助10
刚刚
2秒前
白苏su应助111采纳,获得10
2秒前
Paddi完成签到 ,获得积分10
2秒前
2秒前
惜灵完成签到 ,获得积分10
3秒前
3秒前
嘻嘻哈哈完成签到 ,获得积分10
6秒前
打打应助青城山下小星瞳采纳,获得10
8秒前
iris601发布了新的文献求助10
9秒前
天天快乐应助懒羊羊采纳,获得10
9秒前
11秒前
111完成签到,获得积分10
11秒前
天真的青烟完成签到,获得积分10
12秒前
Lucas应助现代孤萍采纳,获得10
13秒前
大模型应助马越智能服务采纳,获得10
14秒前
ELENA完成签到,获得积分10
14秒前
XHT完成签到,获得积分10
15秒前
15秒前
16秒前
17秒前
科研通AI6应助念梦采纳,获得10
17秒前
初小花完成签到,获得积分10
17秒前
18秒前
八乙基环辛四烯完成签到,获得积分10
20秒前
familiar_people完成签到,获得积分10
20秒前
20秒前
20秒前
叮ding完成签到,获得积分10
21秒前
22秒前
22秒前
23秒前
24秒前
24秒前
25秒前
旷野完成签到 ,获得积分10
25秒前
yyst完成签到,获得积分10
25秒前
26秒前
和谐鸭子完成签到,获得积分10
26秒前
懒羊羊发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633044
求助须知:如何正确求助?哪些是违规求助? 4029172
关于积分的说明 12466463
捐赠科研通 3715416
什么是DOI,文献DOI怎么找? 2050092
邀请新用户注册赠送积分活动 1081655
科研通“疑难数据库(出版商)”最低求助积分说明 963994