半影
缺血
周细胞
微循环
医学
大脑中动脉
脑血流
脑循环
脑动脉
病理
心脏病学
内科学
生物
内皮干细胞
生物化学
体外
作者
Baoshan Qiu,Zichen Zhao,Nan Wang,Ziyan Feng,Xingjun Chen,Weiqi Chen,Wenzhi Sun,Woo‐Ping Ge,Yilong Wang
标识
DOI:10.1177/0271678x221146128
摘要
Different segments of the cerebral vascular network may react distinctly to brain ischemia and recanalization. However, there are limited systematic observations of these vascular responses in mice under a physiological state following ischemic stroke. Herein, we aimed to investigate the vasodynamics among several segments along the cerebral vessels in awake mice following cerebral ischemia/recanalization via two-photon imaging. Plasma in the blood vessels were labelled with fluorescein isothiocyanate dextran. Smooth muscle cells and pericytes were labelled via a genetic mouse line (PDGFRβ-tdTomato). We observed a no-reflow phenomenon in downstream microcirculation, and the vasodynamics of different segments of larger cerebral vessels varied in the penumbra area following cerebral ischemia-reperfusion. Despite obtaining reperfusion from the middle cerebral artery, there were significant constrictions of the downstream blood vessels in the ischemic penumbra zone. Interestingly, we observed an extensive constriction of the capillaries 3 hours following recanalization, both at the site covered by pericyte soma and by the pericyte process alone. In addition, we did not observe a significant positive correlation between the changed capillary diameter and pericyte coverage along the capillary. Taken together, abnormal constrictions and vasodynamics of cerebral large and small vessels may directly contribute to microcirculation failure following recanalization in ischemic stroke.
科研通智能强力驱动
Strongly Powered by AbleSci AI