亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using POI and time series Landsat data to identify and rebuilt surface mining, vegetation disturbance and land reclamation process based on Google Earth Engine

土地复垦 扰动(地质) 煤矿开采 环境科学 露天开采 植被(病理学) 遥感 环境资源管理 采矿工程 地理 工程类 地质学 医学 病理 古生物学 考古
作者
Wu Xiao,Xinyu Deng,Tingting He,Jiwang Guo
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:327: 116920-116920 被引量:33
标识
DOI:10.1016/j.jenvman.2022.116920
摘要

The development of coal resources is necessary, but it has a huge negative impact on land, ecology, and the environment. With the increasing awareness of environmental protection and the requirements of related regulations, the design and practice of reclamation projects run through the mining life cycle and continue for a long time after the coal production. High-precision monitoring of mining disturbance and reclamation, quantifying the degree and time of vegetation disturbance and restoration, is of great significance to minimize the environmental effect of mining. Remote sensing, widely used as efficient monitoring tool, but there is not enough research on disturbance and reclamation monitoring taking into account large-scale areas and high temporal and spatial accuracy. Especially when mining sites remain unknown, how to distinguish the disturbance of coal mining and other human activities affecting the surface land cover has become a challenge. Therefore, this paper proposed a method to reconstruct the time series of mining disturbance and reclamation in a large area by using the POI (point of interest) and Landsat time series images using multiple buffer analysis methods. The process includes: (1) Retrieval of POI in the study area based on the public mining list using Python crawler, and buffering 100 km for preliminary extraction of potential mining areas; (2) Using spectral index mask and random forest algorithm to accurately extract the exposed coal on the Google Earth Engine (GEE) platform; (3) Buffering 10 km to identify the occurrence of disturbance and reclamation, using pixel-based temporal trajectory identification of LandTrendr algorithm under GEE. The method successful detect the change points of surface coal mining disturbance and reclamation in eastern Inner Mongolia of China. The results show that: (1) The method can effectively identify the extent of surface coal mining disturbance and reclamation, and the overall extraction accuracy is 81%. (2) Surface coal mining disturbance in eastern Inner Mongolia was concentrated in 2006-2011. By 2020, the total disturbed area is 627.8 km2, with an average annual disturbance of 18.5 km2, and the annual maximum disturbance to the ground reached 64.6 km2 in 2008. With the total reclaimed area being 236.3 km2, the reclamation rate is about 37.6%. This study provides a systematic solution and process for monitoring the disturbance and reclamation of surface coal mining in a large range with little known about the mines' location. It can effectively identify the mining disturbance and reclamation process which can also be extended to other areas, providing a quantitative assessment of mining disturbance and reclamation, which can support further ecological restoration decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
ZhaoW发布了新的文献求助10
7秒前
烟消云散完成签到,获得积分10
12秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
15秒前
Muhammad完成签到,获得积分10
19秒前
20秒前
Muhammad发布了新的文献求助10
21秒前
科研通AI2S应助ZhaoW采纳,获得10
29秒前
1分钟前
nxdsk完成签到,获得积分10
1分钟前
1分钟前
踏实白柏发布了新的文献求助10
1分钟前
李健应助踏实白柏采纳,获得10
1分钟前
EROS完成签到 ,获得积分10
1分钟前
fu完成签到 ,获得积分10
1分钟前
彩色映雁完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
wangfaqing942完成签到 ,获得积分10
2分钟前
传奇3应助WQY采纳,获得10
3分钟前
mingjing完成签到 ,获得积分10
3分钟前
3分钟前
vinci发布了新的文献求助10
3分钟前
WQY发布了新的文献求助10
3分钟前
4分钟前
韶绍完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
ly完成签到 ,获得积分10
4分钟前
4分钟前
hugeyoung完成签到,获得积分10
5分钟前
学生信的大叔完成签到,获得积分10
5分钟前
5分钟前
Guin发布了新的文献求助30
5分钟前
pegasus0802完成签到,获得积分10
5分钟前
5分钟前
mix完成签到,获得积分10
5分钟前
6分钟前
白星辰完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476432
求助须知:如何正确求助?哪些是违规求助? 4578082
关于积分的说明 14363420
捐赠科研通 4505993
什么是DOI,文献DOI怎么找? 2469042
邀请新用户注册赠送积分活动 1456527
关于科研通互助平台的介绍 1430272