Using POI and time series Landsat data to identify and rebuilt surface mining, vegetation disturbance and land reclamation process based on Google Earth Engine

土地复垦 扰动(地质) 煤矿开采 环境科学 露天开采 植被(病理学) 遥感 环境资源管理 数据挖掘 采矿工程 计算机科学 地理 工程类 地质学 医学 病理 古生物学 考古 废物管理
作者
Wu Xiao,Xinyu Deng,Tingting He,Jiwang Guo
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:327: 116920-116920 被引量:16
标识
DOI:10.1016/j.jenvman.2022.116920
摘要

The development of coal resources is necessary, but it has a huge negative impact on land, ecology, and the environment. With the increasing awareness of environmental protection and the requirements of related regulations, the design and practice of reclamation projects run through the mining life cycle and continue for a long time after the coal production. High-precision monitoring of mining disturbance and reclamation, quantifying the degree and time of vegetation disturbance and restoration, is of great significance to minimize the environmental effect of mining. Remote sensing, widely used as efficient monitoring tool, but there is not enough research on disturbance and reclamation monitoring taking into account large-scale areas and high temporal and spatial accuracy. Especially when mining sites remain unknown, how to distinguish the disturbance of coal mining and other human activities affecting the surface land cover has become a challenge. Therefore, this paper proposed a method to reconstruct the time series of mining disturbance and reclamation in a large area by using the POI (point of interest) and Landsat time series images using multiple buffer analysis methods. The process includes: (1) Retrieval of POI in the study area based on the public mining list using Python crawler, and buffering 100 km for preliminary extraction of potential mining areas; (2) Using spectral index mask and random forest algorithm to accurately extract the exposed coal on the Google Earth Engine (GEE) platform; (3) Buffering 10 km to identify the occurrence of disturbance and reclamation, using pixel-based temporal trajectory identification of LandTrendr algorithm under GEE. The method successful detect the change points of surface coal mining disturbance and reclamation in eastern Inner Mongolia of China. The results show that: (1) The method can effectively identify the extent of surface coal mining disturbance and reclamation, and the overall extraction accuracy is 81%. (2) Surface coal mining disturbance in eastern Inner Mongolia was concentrated in 2006-2011. By 2020, the total disturbed area is 627.8 km2, with an average annual disturbance of 18.5 km2, and the annual maximum disturbance to the ground reached 64.6 km2 in 2008. With the total reclaimed area being 236.3 km2, the reclamation rate is about 37.6%. This study provides a systematic solution and process for monitoring the disturbance and reclamation of surface coal mining in a large range with little known about the mines' location. It can effectively identify the mining disturbance and reclamation process which can also be extended to other areas, providing a quantitative assessment of mining disturbance and reclamation, which can support further ecological restoration decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
孤岛飞鹰发布了新的文献求助10
1秒前
酷炫完成签到,获得积分10
1秒前
ty心明亮完成签到 ,获得积分10
2秒前
3秒前
liugm发布了新的文献求助10
3秒前
4秒前
4秒前
ardejiang发布了新的文献求助10
6秒前
Mr.Ren完成签到,获得积分10
7秒前
Tian&完成签到 ,获得积分10
8秒前
洋洋完成签到,获得积分10
8秒前
莫名乐乐发布了新的文献求助10
8秒前
8R60d8应助yyyalles采纳,获得10
8秒前
Leukocyte完成签到 ,获得积分10
8秒前
kk发布了新的文献求助10
9秒前
秋水揽星河完成签到,获得积分10
11秒前
寒子川发布了新的文献求助10
11秒前
动听的薯条完成签到 ,获得积分10
11秒前
唐俊辉完成签到,获得积分10
11秒前
zq完成签到 ,获得积分10
12秒前
16秒前
sx应助dingxiaosong采纳,获得10
16秒前
Jasper应助HUSHIYI采纳,获得10
18秒前
夏惋清完成签到 ,获得积分0
18秒前
Hsxbk.发布了新的文献求助10
19秒前
20秒前
21秒前
阿泽完成签到,获得积分10
21秒前
dark完成签到,获得积分10
22秒前
可靠的jie发布了新的文献求助10
22秒前
23秒前
24秒前
寒子川完成签到,获得积分10
24秒前
25秒前
26秒前
一颗煤炭完成签到 ,获得积分10
28秒前
28秒前
wangermazi发布了新的文献求助10
28秒前
完美星落发布了新的文献求助10
28秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154407
求助须知:如何正确求助?哪些是违规求助? 2805321
关于积分的说明 7864166
捐赠科研通 2463472
什么是DOI,文献DOI怎么找? 1311341
科研通“疑难数据库(出版商)”最低求助积分说明 629556
版权声明 601821