Using POI and time series Landsat data to identify and rebuilt surface mining, vegetation disturbance and land reclamation process based on Google Earth Engine

土地复垦 扰动(地质) 煤矿开采 环境科学 露天开采 植被(病理学) 遥感 环境资源管理 采矿工程 地理 工程类 地质学 医学 病理 古生物学 考古
作者
Wu Xiao,Xinyu Deng,Tingting He,Jiwang Guo
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:327: 116920-116920 被引量:23
标识
DOI:10.1016/j.jenvman.2022.116920
摘要

The development of coal resources is necessary, but it has a huge negative impact on land, ecology, and the environment. With the increasing awareness of environmental protection and the requirements of related regulations, the design and practice of reclamation projects run through the mining life cycle and continue for a long time after the coal production. High-precision monitoring of mining disturbance and reclamation, quantifying the degree and time of vegetation disturbance and restoration, is of great significance to minimize the environmental effect of mining. Remote sensing, widely used as efficient monitoring tool, but there is not enough research on disturbance and reclamation monitoring taking into account large-scale areas and high temporal and spatial accuracy. Especially when mining sites remain unknown, how to distinguish the disturbance of coal mining and other human activities affecting the surface land cover has become a challenge. Therefore, this paper proposed a method to reconstruct the time series of mining disturbance and reclamation in a large area by using the POI (point of interest) and Landsat time series images using multiple buffer analysis methods. The process includes: (1) Retrieval of POI in the study area based on the public mining list using Python crawler, and buffering 100 km for preliminary extraction of potential mining areas; (2) Using spectral index mask and random forest algorithm to accurately extract the exposed coal on the Google Earth Engine (GEE) platform; (3) Buffering 10 km to identify the occurrence of disturbance and reclamation, using pixel-based temporal trajectory identification of LandTrendr algorithm under GEE. The method successful detect the change points of surface coal mining disturbance and reclamation in eastern Inner Mongolia of China. The results show that: (1) The method can effectively identify the extent of surface coal mining disturbance and reclamation, and the overall extraction accuracy is 81%. (2) Surface coal mining disturbance in eastern Inner Mongolia was concentrated in 2006-2011. By 2020, the total disturbed area is 627.8 km2, with an average annual disturbance of 18.5 km2, and the annual maximum disturbance to the ground reached 64.6 km2 in 2008. With the total reclaimed area being 236.3 km2, the reclamation rate is about 37.6%. This study provides a systematic solution and process for monitoring the disturbance and reclamation of surface coal mining in a large range with little known about the mines' location. It can effectively identify the mining disturbance and reclamation process which can also be extended to other areas, providing a quantitative assessment of mining disturbance and reclamation, which can support further ecological restoration decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
绿野仙踪完成签到,获得积分10
3秒前
木木完成签到,获得积分10
3秒前
Feng5945完成签到 ,获得积分10
3秒前
阿波罗完成签到 ,获得积分10
4秒前
包飞雪发布了新的文献求助10
5秒前
Mm完成签到,获得积分10
6秒前
夏虫完成签到,获得积分10
6秒前
勤奋尔丝完成签到 ,获得积分10
7秒前
czz014完成签到,获得积分10
10秒前
dream完成签到 ,获得积分10
15秒前
包飞雪完成签到,获得积分10
17秒前
chenjun7080完成签到,获得积分10
18秒前
十二应助科研通管家采纳,获得10
19秒前
天天快乐应助科研通管家采纳,获得10
19秒前
完美世界应助科研通管家采纳,获得10
19秒前
怡然猎豹完成签到,获得积分10
27秒前
牛奶拌可乐完成签到 ,获得积分10
27秒前
欢喜的早晨完成签到,获得积分10
36秒前
禾页完成签到 ,获得积分10
39秒前
yyy关闭了yyy文献求助
44秒前
mendicant完成签到,获得积分10
46秒前
帅哥吴克完成签到,获得积分10
47秒前
耍酷依玉完成签到,获得积分10
48秒前
Wilbert完成签到 ,获得积分10
49秒前
50秒前
邪恶青年完成签到,获得积分10
52秒前
田田完成签到 ,获得积分10
54秒前
awedfa发布了新的文献求助10
57秒前
你好我有一个帽衫完成签到,获得积分10
57秒前
小石头完成签到,获得积分10
58秒前
孤独剑完成签到 ,获得积分10
58秒前
曾泓跃完成签到 ,获得积分10
59秒前
whh完成签到,获得积分10
1分钟前
苯二氮卓完成签到,获得积分10
1分钟前
桃子发布了新的文献求助10
1分钟前
千帆破浪完成签到 ,获得积分10
1分钟前
意境完成签到 ,获得积分10
1分钟前
灰玲牛关注了科研通微信公众号
1分钟前
桃子完成签到,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965780
求助须知:如何正确求助?哪些是违规求助? 3511022
关于积分的说明 11156025
捐赠科研通 3245496
什么是DOI,文献DOI怎么找? 1793089
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804255