Using POI and time series Landsat data to identify and rebuilt surface mining, vegetation disturbance and land reclamation process based on Google Earth Engine

土地复垦 扰动(地质) 煤矿开采 环境科学 露天开采 植被(病理学) 遥感 环境资源管理 采矿工程 地理 工程类 地质学 医学 病理 古生物学 考古
作者
Wu Xiao,Xinyu Deng,Tingting He,Jiwang Guo
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:327: 116920-116920 被引量:33
标识
DOI:10.1016/j.jenvman.2022.116920
摘要

The development of coal resources is necessary, but it has a huge negative impact on land, ecology, and the environment. With the increasing awareness of environmental protection and the requirements of related regulations, the design and practice of reclamation projects run through the mining life cycle and continue for a long time after the coal production. High-precision monitoring of mining disturbance and reclamation, quantifying the degree and time of vegetation disturbance and restoration, is of great significance to minimize the environmental effect of mining. Remote sensing, widely used as efficient monitoring tool, but there is not enough research on disturbance and reclamation monitoring taking into account large-scale areas and high temporal and spatial accuracy. Especially when mining sites remain unknown, how to distinguish the disturbance of coal mining and other human activities affecting the surface land cover has become a challenge. Therefore, this paper proposed a method to reconstruct the time series of mining disturbance and reclamation in a large area by using the POI (point of interest) and Landsat time series images using multiple buffer analysis methods. The process includes: (1) Retrieval of POI in the study area based on the public mining list using Python crawler, and buffering 100 km for preliminary extraction of potential mining areas; (2) Using spectral index mask and random forest algorithm to accurately extract the exposed coal on the Google Earth Engine (GEE) platform; (3) Buffering 10 km to identify the occurrence of disturbance and reclamation, using pixel-based temporal trajectory identification of LandTrendr algorithm under GEE. The method successful detect the change points of surface coal mining disturbance and reclamation in eastern Inner Mongolia of China. The results show that: (1) The method can effectively identify the extent of surface coal mining disturbance and reclamation, and the overall extraction accuracy is 81%. (2) Surface coal mining disturbance in eastern Inner Mongolia was concentrated in 2006-2011. By 2020, the total disturbed area is 627.8 km2, with an average annual disturbance of 18.5 km2, and the annual maximum disturbance to the ground reached 64.6 km2 in 2008. With the total reclaimed area being 236.3 km2, the reclamation rate is about 37.6%. This study provides a systematic solution and process for monitoring the disturbance and reclamation of surface coal mining in a large range with little known about the mines' location. It can effectively identify the mining disturbance and reclamation process which can also be extended to other areas, providing a quantitative assessment of mining disturbance and reclamation, which can support further ecological restoration decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助科研小白采纳,获得10
刚刚
嘿嘿发布了新的文献求助10
刚刚
李爱国应助蒋宁采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
大模型应助苏习习采纳,获得10
2秒前
4秒前
5秒前
小马甲应助乔木采纳,获得10
6秒前
fanfan完成签到,获得积分10
7秒前
7秒前
7秒前
一一完成签到,获得积分10
8秒前
臭皮完成签到,获得积分10
8秒前
8秒前
上官若男应助13采纳,获得10
9秒前
邓佳鑫Alan应助Lee采纳,获得10
9秒前
邪王真眼发布了新的文献求助100
9秒前
liuxingyulgg发布了新的文献求助10
10秒前
丰富枫叶完成签到,获得积分20
11秒前
77最可爱发布了新的文献求助10
11秒前
蓝天应助健脊护柱采纳,获得10
11秒前
怡神001发布了新的文献求助10
11秒前
11秒前
11秒前
zkyyinf_zero完成签到,获得积分10
12秒前
orixero应助zpctx采纳,获得10
12秒前
共享精神应助蒋宁采纳,获得10
12秒前
gyhmm发布了新的文献求助10
12秒前
小蘑菇应助小胡同学采纳,获得10
12秒前
汉堡包应助bruce采纳,获得10
13秒前
moonlight发布了新的文献求助10
13秒前
微笑向卉发布了新的文献求助10
13秒前
13秒前
充满希望完成签到,获得积分10
13秒前
Wu发布了新的文献求助10
14秒前
15秒前
小姚完成签到,获得积分10
15秒前
朝夕完成签到,获得积分20
16秒前
蒋宁完成签到,获得积分10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601274
求助须知:如何正确求助?哪些是违规求助? 4686785
关于积分的说明 14846051
捐赠科研通 4680352
什么是DOI,文献DOI怎么找? 2539276
邀请新用户注册赠送积分活动 1506151
关于科研通互助平台的介绍 1471283