Small Target Detection Model in Aerial Images Based on TCA-YOLOv5m

计算机科学 目标检测 航空影像 计算机视觉 人工智能 变压器 特征提取 棱锥(几何) 模式识别(心理学) 图像(数学) 数学 电压 物理 几何学 量子力学
作者
Min Huang,Yiyan Zhang,Yazhou Chen
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 3352-3366 被引量:3
标识
DOI:10.1109/access.2022.3232293
摘要

Target detection in aerial images taken by unmanned aerial vehicles is the most widely used scene at present. Compared with ordinary images, the background of aerial images is more complex, and the target size is smaller, which results in inferior detection precision and a high false detection rate. This paper proposes a new small target detection model TCA-YOLOv5m, which is based on YOLOv5m and combines the Transformer algorithm and the Coordinate Attention (CA) mechanism. In this model, the transformer algorithm is added to the end of the backbone of the YOLOv5, which enables the model to mine more features information of images. In the neck layer of the TCA-YOLOv5m, the Path Aggregation Network (PANet) and transformer algorithm are combined to enhance the expression capacity for the feature pyramid and improve the detection precision of occluded high-density small targets, and CA is introduced to more accurately locate targets in high-density scenes. In addition, the TCA-YOLOv5m adds a detection layer to improve the ability to capture small targets. This paper uses VisDrone 2019 as experimental data, and takes experiments to compare the detection precision and detection speed of the proposed model with baseline models. The experiment results indicate that the detection precision of the TCA-YOLOv5m reaches 97.4%, which is 5.2% higher than that of YOLOv5; the value of MAP @ 50 reaches 58.5%, which is 14.8% higher than YOLOv5. The Frames Per Second (FPS) of the TCA-YOLOv5m is 12.96 f/s, which ensures a certain real-time performance. Therefore, the TCA-YOLOv5m is suitable for the task of detecting dense small targets in aerial images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hyjcnhyj完成签到,获得积分10
2秒前
英姑应助赖道之采纳,获得10
3秒前
5秒前
研友_LXdbaL发布了新的文献求助30
5秒前
思源应助单薄新烟采纳,获得10
6秒前
6秒前
7秒前
Zz完成签到,获得积分10
7秒前
Prandtl完成签到 ,获得积分10
9秒前
10秒前
zfzf0422完成签到 ,获得积分10
11秒前
上官若男应助jackie采纳,获得10
11秒前
11秒前
我是站长才怪应助Benliu采纳,获得20
12秒前
12秒前
zh20130完成签到,获得积分10
12秒前
12秒前
TT发布了新的文献求助10
13秒前
Star1983发布了新的文献求助10
13秒前
研友_LXdbaL完成签到,获得积分10
14秒前
15秒前
在水一方应助66采纳,获得10
16秒前
16秒前
16秒前
缘一发布了新的文献求助10
17秒前
junzilan发布了新的文献求助10
18秒前
CipherSage应助赖道之采纳,获得10
19秒前
ccc完成签到,获得积分10
19秒前
19秒前
19秒前
22秒前
Pauline完成签到,获得积分10
24秒前
jackie发布了新的文献求助10
24秒前
笨笨摇伽发布了新的文献求助10
26秒前
科目三应助皓月繁星采纳,获得10
26秒前
tomato完成签到,获得积分20
28秒前
CodeCraft应助缘一采纳,获得10
29秒前
小二郎应助刘铭晨采纳,获得10
29秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808