Hierarchical Dynamic Graph Convolutional Network With Interpretability for EEG-Based Emotion Recognition

可解释性 判别式 计算机科学 脑电图 模式识别(心理学) 人工智能 邻接矩阵 图形 邻接表 卷积神经网络 代表(政治) 机器学习 理论计算机科学 算法 心理学 法学 精神科 政治 政治学
作者
Mengqing Ye,C. L. Philip Chen,Tong Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (11): 19489-19500 被引量:83
标识
DOI:10.1109/tnnls.2022.3225855
摘要

Graph convolutional networks (GCNs) have shown great prowess in learning topological relationships among electroencephalogram (EEG) channels for EEG-based emotion recognition. However, most existing GCN-only methods are designed with a single spatial pattern, lacking connectivity enhancement within local functional regions and ignoring the data dependencies of EEG original data. In this article, hierarchical dynamic GCN (HD-GCN) is proposed to explore dynamic multilevel spatial information among EEG channels, with discriminative features of EEG signals as auxiliary information. Specifically, representation learning in topological space consists of two branches: one for extracting global dynamic information and one for exploring augmentation information in local functional regions. In each branch, a layerwise adjacency matrix is utilized to enrich the expressive power of GCN. Furthermore, a data-dependent auxiliary information module (AIM) is developed to capture multidimensional fusion features. Extensive experiments on two public datasets, SJTU emotion EEG dataset (SEED) and DREAMER, demonstrate that the proposed method consistently exceeds state-of-the-art methods. Interpretability analysis of the proposed model is performed, discovering the active brain regions and important electrode pairs related to emotion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Maestro_S应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
Maestro_S应助科研通管家采纳,获得10
2秒前
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
华仔应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
华仔应助科研通管家采纳,获得10
2秒前
3秒前
3秒前
mingzhi完成签到,获得积分10
3秒前
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
orixero应助科研通管家采纳,获得10
3秒前
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
苹果云朵应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
3秒前
suodeheng发布了新的文献求助20
3秒前
苹果云朵应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
今后应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5793684
求助须知:如何正确求助?哪些是违规求助? 5751490
关于积分的说明 15486792
捐赠科研通 4920641
什么是DOI,文献DOI怎么找? 2649033
邀请新用户注册赠送积分活动 1596363
关于科研通互助平台的介绍 1550911