Graph-Based Feature Selection in Classification: Structure and Node Dynamic Mechanisms

特征选择 图形 特征(语言学) 计算机科学 模式识别(心理学) 人工智能 算法 数据挖掘 理论计算机科学 语言学 哲学
作者
Fan Cheng,Changjun Zhou,Xudong Liu,Qijun Wang,Jianfeng Qiu,Lei Zhang
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:7 (4): 1314-1328 被引量:4
标识
DOI:10.1109/tetci.2022.3225550
摘要

Recently, researchers pay more attention to designing graph-based methods to address the feature selection problem, since these methods can effectively utilize the underlying topology structure and complex relationships between nodes in the constructed feature graph. Therefore, they can obtain the feature subset with high quality. The existing graph-based methods mainly focus on using different graph-theoretical techniques to select features from the constructed feature graphs. However, little attention is focused on constructing a suitable feature graph for feature selection, which is also an important component for achieving a good feature subset. To fill the gap, in this paper, a novel graph-based algorithm named GBFS-SND is proposed for feature selection, where the structure and node dynamic mechanisms are designed to directly optimize the performance of feature selection. To be specific, in GBFS-SND, a candidate feature graph is firstly created by considering both the importance of feature and the relations between features. Then, on the created candidate graph, an MOEA-based structure dynamic mechanism is suggested to acquire a feature subgraph with better structure, from which we can obtain a promising feature subset. Finally, a node dynamic mechanism is also suggested, with which the weights of the nodes are dynamically adjusted as the structure of feature graph changes. Thus, the performance of GBFS-SND can be further enhanced. Empirical studies are conducted by comparing the proposed algorithm with several state-of-the-art feature selection methods on different data sets. The experimental results demonstrate the superiority of GBFS-SND over the comparison methods in terms of both the accuracy and the number of selected features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纸条条完成签到 ,获得积分10
6秒前
可靠月亮完成签到,获得积分10
11秒前
16秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
Maestro_S应助科研通管家采纳,获得10
17秒前
星辰大海应助科研通管家采纳,获得10
17秒前
aldehyde应助科研通管家采纳,获得10
18秒前
18秒前
aldehyde应助科研通管家采纳,获得10
18秒前
健壮可冥完成签到 ,获得积分10
24秒前
叶子完成签到 ,获得积分10
27秒前
标致的之柔完成签到 ,获得积分10
28秒前
坚强志泽完成签到 ,获得积分10
29秒前
30秒前
激动的xx完成签到 ,获得积分10
40秒前
Merci完成签到,获得积分10
43秒前
45秒前
50秒前
流星雨完成签到 ,获得积分10
58秒前
Conner完成签到 ,获得积分10
1分钟前
时尚的康乃馨完成签到 ,获得积分10
1分钟前
Ricardo完成签到 ,获得积分10
1分钟前
1分钟前
河堤完成签到 ,获得积分10
1分钟前
果粒橙完成签到 ,获得积分10
1分钟前
1分钟前
浮游应助20240901采纳,获得10
1分钟前
qianyixingchen完成签到 ,获得积分10
1分钟前
elsa嘻嘻完成签到 ,获得积分10
1分钟前
刘蕊发布了新的文献求助10
1分钟前
turtle完成签到 ,获得积分10
1分钟前
韧迹完成签到 ,获得积分0
1分钟前
onevip完成签到,获得积分0
1分钟前
ycd完成签到,获得积分10
1分钟前
粗心的飞槐完成签到 ,获得积分10
1分钟前
缓慢的自行车完成签到 ,获得积分10
1分钟前
乐乐应助OmniQuan采纳,获得10
1分钟前
恋风阁完成签到 ,获得积分10
1分钟前
害羞的裘完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304103
求助须知:如何正确求助?哪些是违规求助? 4450691
关于积分的说明 13849638
捐赠科研通 4337600
什么是DOI,文献DOI怎么找? 2381529
邀请新用户注册赠送积分活动 1376533
关于科研通互助平台的介绍 1343502