亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Graph-Based Feature Selection in Classification: Structure and Node Dynamic Mechanisms

特征选择 图形 特征(语言学) 计算机科学 模式识别(心理学) 人工智能 算法 数据挖掘 理论计算机科学 语言学 哲学
作者
Fan Cheng,Changjun Zhou,Xudong Liu,Qijun Wang,Jianfeng Qiu,Lei Zhang
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:7 (4): 1314-1328 被引量:4
标识
DOI:10.1109/tetci.2022.3225550
摘要

Recently, researchers pay more attention to designing graph-based methods to address the feature selection problem, since these methods can effectively utilize the underlying topology structure and complex relationships between nodes in the constructed feature graph. Therefore, they can obtain the feature subset with high quality. The existing graph-based methods mainly focus on using different graph-theoretical techniques to select features from the constructed feature graphs. However, little attention is focused on constructing a suitable feature graph for feature selection, which is also an important component for achieving a good feature subset. To fill the gap, in this paper, a novel graph-based algorithm named GBFS-SND is proposed for feature selection, where the structure and node dynamic mechanisms are designed to directly optimize the performance of feature selection. To be specific, in GBFS-SND, a candidate feature graph is firstly created by considering both the importance of feature and the relations between features. Then, on the created candidate graph, an MOEA-based structure dynamic mechanism is suggested to acquire a feature subgraph with better structure, from which we can obtain a promising feature subset. Finally, a node dynamic mechanism is also suggested, with which the weights of the nodes are dynamically adjusted as the structure of feature graph changes. Thus, the performance of GBFS-SND can be further enhanced. Empirical studies are conducted by comparing the proposed algorithm with several state-of-the-art feature selection methods on different data sets. The experimental results demonstrate the superiority of GBFS-SND over the comparison methods in terms of both the accuracy and the number of selected features.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
YHF2发布了新的文献求助10
5秒前
YHF2完成签到,获得积分10
10秒前
慕青应助sxj采纳,获得10
14秒前
珈蓝完成签到,获得积分10
15秒前
24秒前
sxj发布了新的文献求助10
30秒前
啊啊啊发布了新的文献求助10
32秒前
41秒前
lod完成签到,获得积分10
48秒前
所所应助科研通管家采纳,获得30
54秒前
Ava应助科研通管家采纳,获得10
54秒前
57秒前
啊啊啊完成签到,获得积分10
57秒前
59秒前
59秒前
小马2023发布了新的文献求助10
1分钟前
chandlerwong发布了新的文献求助10
1分钟前
1分钟前
氯雷他定发布了新的文献求助10
1分钟前
chandlerwong完成签到,获得积分10
1分钟前
上官若男应助sxj采纳,获得10
1分钟前
llll完成签到 ,获得积分0
1分钟前
氯雷他定完成签到,获得积分10
1分钟前
1分钟前
NattyPoe发布了新的文献求助10
1分钟前
阿诺发布了新的文献求助10
1分钟前
1分钟前
眉间雪完成签到 ,获得积分20
1分钟前
天真似狮完成签到 ,获得积分10
1分钟前
sxj发布了新的文献求助10
1分钟前
余念安完成签到 ,获得积分10
1分钟前
Lucas应助阿诺采纳,获得10
1分钟前
桐夜完成签到 ,获得积分10
1分钟前
liang完成签到 ,获得积分10
2分钟前
2分钟前
隐形曼青应助稿子哥采纳,获得30
2分钟前
怡然的鱼发布了新的文献求助10
2分钟前
InsanityK发布了新的文献求助10
2分钟前
怡然的鱼完成签到,获得积分20
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
《The Emergency Nursing High-Yield Guide》 (或简称为 Emergency Nursing High-Yield Essentials) 500
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5880512
求助须知:如何正确求助?哪些是违规求助? 6573473
关于积分的说明 15689941
捐赠科研通 5000219
什么是DOI,文献DOI怎么找? 2694223
邀请新用户注册赠送积分活动 1636089
关于科研通互助平台的介绍 1593468