Graph-Based Feature Selection in Classification: Structure and Node Dynamic Mechanisms

特征选择 图形 特征(语言学) 计算机科学 模式识别(心理学) 人工智能 算法 数据挖掘 理论计算机科学 语言学 哲学
作者
Fan Cheng,Changjun Zhou,Xudong Liu,Qijun Wang,Jianfeng Qiu,Lei Zhang
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:7 (4): 1314-1328 被引量:4
标识
DOI:10.1109/tetci.2022.3225550
摘要

Recently, researchers pay more attention to designing graph-based methods to address the feature selection problem, since these methods can effectively utilize the underlying topology structure and complex relationships between nodes in the constructed feature graph. Therefore, they can obtain the feature subset with high quality. The existing graph-based methods mainly focus on using different graph-theoretical techniques to select features from the constructed feature graphs. However, little attention is focused on constructing a suitable feature graph for feature selection, which is also an important component for achieving a good feature subset. To fill the gap, in this paper, a novel graph-based algorithm named GBFS-SND is proposed for feature selection, where the structure and node dynamic mechanisms are designed to directly optimize the performance of feature selection. To be specific, in GBFS-SND, a candidate feature graph is firstly created by considering both the importance of feature and the relations between features. Then, on the created candidate graph, an MOEA-based structure dynamic mechanism is suggested to acquire a feature subgraph with better structure, from which we can obtain a promising feature subset. Finally, a node dynamic mechanism is also suggested, with which the weights of the nodes are dynamically adjusted as the structure of feature graph changes. Thus, the performance of GBFS-SND can be further enhanced. Empirical studies are conducted by comparing the proposed algorithm with several state-of-the-art feature selection methods on different data sets. The experimental results demonstrate the superiority of GBFS-SND over the comparison methods in terms of both the accuracy and the number of selected features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
景辣条应助科研通管家采纳,获得10
6秒前
ygr应助科研通管家采纳,获得20
6秒前
6秒前
景辣条应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
景辣条应助科研通管家采纳,获得10
7秒前
0128lun应助科研通管家采纳,获得10
7秒前
9秒前
tachang完成签到,获得积分10
11秒前
12秒前
周浩宇发布了新的文献求助10
13秒前
荼柒完成签到,获得积分10
14秒前
懵懂的子骞完成签到 ,获得积分10
16秒前
ddd完成签到,获得积分10
24秒前
荼柒完成签到,获得积分10
25秒前
26秒前
26秒前
Lucas应助负责的柏柳采纳,获得30
29秒前
SBGLP发布了新的文献求助10
29秒前
老北京发布了新的文献求助10
29秒前
29秒前
老北京发布了新的文献求助10
30秒前
老北京发布了新的文献求助10
31秒前
32秒前
甜美小蕾发布了新的文献求助10
33秒前
荼柒完成签到,获得积分10
36秒前
周浩宇完成签到,获得积分20
41秒前
fan完成签到 ,获得积分10
43秒前
45秒前
46秒前
荼柒完成签到,获得积分10
47秒前
49秒前
50秒前
毛毛猫发布了新的文献求助10
50秒前
53秒前
完美世界应助周一斩采纳,获得10
53秒前
aaaaa发布了新的文献求助10
54秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138583
求助须知:如何正确求助?哪些是违规求助? 2789532
关于积分的说明 7791599
捐赠科研通 2445937
什么是DOI,文献DOI怎么找? 1300750
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079