亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ADHR-CDNet: Attentive Differential High-Resolution Change Detection Network for Remote Sensing Images

计算机科学 棱锥(几何) 图像分辨率 比例(比率) 遥感 保险丝(电气) 特征(语言学) 人工智能 模式识别(心理学) 可视化 影子(心理学) 变更检测 特征提取 数据挖掘 高分辨率 数学 地质学 工程类 哲学 几何学 物理 电气工程 量子力学 语言学 心理治疗师 心理学
作者
Xiuwei Zhang,Mu Tian,Yinghui Xing,Yuanzeng Yue,Yanping Li,Hanlin Yin,Runliang Xia,Jin Jin,Yanning Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:72
标识
DOI:10.1109/tgrs.2022.3221492
摘要

With the development of deep learning, change detection technology has gained great progress. However, how to effectively extract multi-scale substantive changed features and accurately detect small changed objects as well as the accurate details is still a challenge. To solve the problem, we propose Attentived Differential High-Resolution Change Detection Network (ADHR-CDNet) for remote sensing images. In ADHR-CDNet, a novel high-resolution backbone with a Differential Pyramid Module (DPM) is proposed to extract multi-level and multi-scale substantive changed features. The backbone structure with four interconnected sub-network branches of different resolution is helpful to extract multi-level and multi-scale features. DPM is capable of distinguishing between substantive changes and pseudo changes induced by illumination, shadow, seasonal variation, and so on. Then, a novel Multi-Scale Spatial feature Attention Module (MSSAM) is presented to effectively fuse the spatial detail information of different scale features produced by our backbone to generate finer prediction. We conduct quantitative and qualitative experiments on three public change detection datasets: the Lebedev, the LEVIR-CD, and the WHU Building dataset. The proposed ADHR-CDNet reaches F1-score of 97.2% (improved 3.1%) on the Lebedev dataset, 91.4% (improved 1.6%) on the LEVIR-CD dataset, and 90.9% (improved 1.2%) on the WHU Building dataset. The experimental results demonstrate that our method performs much better than the state-of-the-art methods. The visualization comparison results show that our method can effectively detect small changed objects and significantly improve the details of detected changed objects. Our code is available at https://github.com/w-here/ASGO-113lab/tree/main/ADHR-CDNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狂炫一大晚完成签到 ,获得积分10
2秒前
ly发布了新的文献求助10
4秒前
幸运星发布了新的文献求助10
5秒前
6秒前
不开心就吃糖完成签到 ,获得积分10
6秒前
SS完成签到,获得积分0
10秒前
ly完成签到,获得积分10
12秒前
呆萌小鸭子完成签到 ,获得积分10
16秒前
17秒前
酷波er应助务实澜采纳,获得10
20秒前
Dreamy完成签到,获得积分10
24秒前
Dreamy发布了新的文献求助10
32秒前
学不完了完成签到 ,获得积分10
33秒前
缪尔岚完成签到,获得积分10
36秒前
39秒前
幸运星完成签到,获得积分10
43秒前
bingbing34发布了新的文献求助10
44秒前
44秒前
赘婿应助南山荣熙采纳,获得10
50秒前
linnett发布了新的文献求助10
57秒前
舒心豪英完成签到 ,获得积分10
59秒前
好巧完成签到,获得积分10
1分钟前
枫于林完成签到 ,获得积分10
1分钟前
失眠梦柏完成签到,获得积分10
1分钟前
1分钟前
无花果应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得30
1分钟前
失眠梦柏发布了新的文献求助10
1分钟前
科研通AI2S应助zhxq采纳,获得10
1分钟前
1分钟前
king完成签到,获得积分10
1分钟前
skinny发布了新的文献求助10
1分钟前
king发布了新的文献求助10
1分钟前
1分钟前
1分钟前
zxy发布了新的文献求助10
1分钟前
天天快乐应助柏白筠采纳,获得10
1分钟前
储灿发布了新的文献求助10
1分钟前
2分钟前
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544354
求助须知:如何正确求助?哪些是违规求助? 3121554
关于积分的说明 9347855
捐赠科研通 2819801
什么是DOI,文献DOI怎么找? 1550461
邀请新用户注册赠送积分活动 722526
科研通“疑难数据库(出版商)”最低求助积分说明 713273