转化式学习
多元方法论
选择(遗传算法)
采样(信号处理)
计算机科学
领域(数学)
透明度(行为)
管理科学
心理学
人工智能
数学教育
数学
工程类
滤波器(信号处理)
计算机安全
纯数学
计算机视觉
教育学
作者
Tyler G. James,Melissa DeJonckheere,Timothy C. Guetterman
标识
DOI:10.1177/15586898221149470
摘要
Integrating philosophical or paradigmatic dimensions in mixed methods research studies facilitates the development of stronger meta-inferences. The transformative paradigm and the explanatory sequential mixed methods design share a focus on developing sampling criteria, but with different priorities. This article contributes to the field of mixed methods research by presenting a method of integrating transformative sampling considerations in explanatory sequential designs through a participant selection joint display. The approach presented addresses concerns regarding transparency of research decisions in mixed methods studies, while providing a method of centering the transformative paradigm in mixed methods integration procedures.
科研通智能强力驱动
Strongly Powered by AbleSci AI