Learning Spatial-Temporal Dynamics for Short-Term Passenger Flow Prediction in Urban Rail Transit

计算机科学 城市轨道交通 图形 期限(时间) 数据挖掘 工程类 运输工程 理论计算机科学 物理 量子力学
作者
Xianwang Li,Jinxin Wu,Deqiang He,Xiaoliang Teng,Chonghui Ren
出处
期刊:Transportation Research Record [SAGE Publishing]
卷期号:2677 (5): 1330-1348 被引量:1
标识
DOI:10.1177/03611981221143109
摘要

Accurate short-term passenger flow prediction in urban rail transit (URT) plays an important role in ensuring the stable operation of the URT systems. Because of the complex dynamic spatial-temporal dependencies and potential semantic correlations of the URT network, accurate and effective short-term passenger flow prediction is challenging. To solve these problems, a novel model called the dynamic spatial-temporal graph convolutional network (DSTGCN) was proposed. Firstly, spatial semantic graphs (SSGs) were established to encode the spatial dependencies and semantic correlations of the URT network. Meanwhile, the dynamic graph convolutional network (DGCN) with the spatial attention mechanism was used to learn the dynamic spatial correlations of the nodes in the SSGs. Then, the long short-term memory (LSTM) network was integrated into the DGCN to learn the dynamic changes of passenger flow and capture local temporal dependencies. Moreover, the temporal attention mechanism was introduced after LSTM to capture global dynamic temporal correlations by adjusting the weights of different sequence information. Finally, the full connection layers were used to output the prediction results. Several experiments were conducted on Nanning Metro Line 1 real datasets to evaluate the model. The experimental results showed that the DSTGCN can effectively capture the dynamic spatial-temporal dependencies and semantic associations of the passenger flow. Besides, the prediction performances of the DSTGCN were better than those of existing baseline models, and it can provide technical support for improving the intelligent planning and operation decisions of URT systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多多发SCI完成签到,获得积分10
2秒前
Yanping完成签到,获得积分10
3秒前
3秒前
隐形的非笑完成签到 ,获得积分10
4秒前
阔达月亮完成签到,获得积分10
5秒前
nannan完成签到 ,获得积分10
6秒前
hml123完成签到,获得积分10
7秒前
书生完成签到,获得积分10
9秒前
10秒前
指尖沙完成签到,获得积分20
10秒前
量子星尘发布了新的文献求助10
10秒前
科研小白完成签到,获得积分10
11秒前
未完成完成签到,获得积分10
13秒前
墨扬完成签到,获得积分10
13秒前
GZ完成签到 ,获得积分10
15秒前
16秒前
Hua完成签到,获得积分0
18秒前
19秒前
newbiology完成签到 ,获得积分10
21秒前
甜晞完成签到,获得积分10
22秒前
吴小白完成签到 ,获得积分10
24秒前
郭达仲完成签到 ,获得积分10
25秒前
LINDENG2004完成签到 ,获得积分10
25秒前
27秒前
ding完成签到 ,获得积分10
28秒前
周萌完成签到 ,获得积分10
31秒前
myuniv完成签到,获得积分10
32秒前
寒冷巧曼完成签到 ,获得积分10
32秒前
hanliulaixi完成签到 ,获得积分10
32秒前
时尚的初柔完成签到,获得积分10
38秒前
lani完成签到 ,获得积分10
38秒前
荀煜祺发布了新的文献求助10
41秒前
脑洞疼应助crave采纳,获得10
41秒前
碧蓝丹烟完成签到 ,获得积分10
42秒前
沙漠西瓜皮完成签到 ,获得积分10
43秒前
花花糖果完成签到 ,获得积分10
45秒前
cdd完成签到,获得积分10
47秒前
eric888完成签到,获得积分0
47秒前
缥缈的冰旋完成签到,获得积分10
47秒前
小事完成签到 ,获得积分10
50秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008834
求助须知:如何正确求助?哪些是违规求助? 3548485
关于积分的说明 11298899
捐赠科研通 3283114
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 886000
科研通“疑难数据库(出版商)”最低求助积分说明 811220