已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Learning Spatial-Temporal Dynamics for Short-Term Passenger Flow Prediction in Urban Rail Transit

计算机科学 城市轨道交通 图形 期限(时间) 数据挖掘 工程类 运输工程 理论计算机科学 量子力学 物理
作者
Xianwang Li,Jinxin Wu,Deqiang He,Xiaoliang Teng,Chonghui Ren
出处
期刊:Transportation Research Record [SAGE]
卷期号:2677 (5): 1330-1348 被引量:1
标识
DOI:10.1177/03611981221143109
摘要

Accurate short-term passenger flow prediction in urban rail transit (URT) plays an important role in ensuring the stable operation of the URT systems. Because of the complex dynamic spatial-temporal dependencies and potential semantic correlations of the URT network, accurate and effective short-term passenger flow prediction is challenging. To solve these problems, a novel model called the dynamic spatial-temporal graph convolutional network (DSTGCN) was proposed. Firstly, spatial semantic graphs (SSGs) were established to encode the spatial dependencies and semantic correlations of the URT network. Meanwhile, the dynamic graph convolutional network (DGCN) with the spatial attention mechanism was used to learn the dynamic spatial correlations of the nodes in the SSGs. Then, the long short-term memory (LSTM) network was integrated into the DGCN to learn the dynamic changes of passenger flow and capture local temporal dependencies. Moreover, the temporal attention mechanism was introduced after LSTM to capture global dynamic temporal correlations by adjusting the weights of different sequence information. Finally, the full connection layers were used to output the prediction results. Several experiments were conducted on Nanning Metro Line 1 real datasets to evaluate the model. The experimental results showed that the DSTGCN can effectively capture the dynamic spatial-temporal dependencies and semantic associations of the passenger flow. Besides, the prediction performances of the DSTGCN were better than those of existing baseline models, and it can provide technical support for improving the intelligent planning and operation decisions of URT systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助zzzdx采纳,获得10
1秒前
可爱的函函应助ke888采纳,获得30
2秒前
4秒前
bkagyin应助panyang采纳,获得10
5秒前
加油完成签到,获得积分10
5秒前
WXZ完成签到 ,获得积分10
5秒前
123发布了新的文献求助10
6秒前
7秒前
8秒前
善学以致用应助初夏采纳,获得10
10秒前
科研通AI2S应助lxy采纳,获得10
11秒前
bkagyin应助Oying采纳,获得10
11秒前
思源应助wz采纳,获得10
12秒前
13秒前
13秒前
清风完成签到,获得积分20
17秒前
pjjjjjjj发布了新的文献求助10
17秒前
Eamin发布了新的文献求助10
17秒前
18秒前
曾俊宇完成签到 ,获得积分10
19秒前
孙佳琦完成签到,获得积分10
20秒前
王啸岳完成签到,获得积分10
20秒前
21秒前
21秒前
21秒前
23秒前
充电宝应助还没睡采纳,获得10
23秒前
研小白发布了新的文献求助10
25秒前
Oying发布了新的文献求助10
25秒前
26秒前
27秒前
合适忆山完成签到,获得积分20
28秒前
29秒前
zzzdx发布了新的文献求助10
29秒前
31秒前
重要灵寒发布了新的文献求助10
32秒前
33秒前
Eamin完成签到,获得积分10
33秒前
烟花应助lululu采纳,获得10
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779070
求助须知:如何正确求助?哪些是违规求助? 5645586
关于积分的说明 15451137
捐赠科研通 4910574
什么是DOI,文献DOI怎么找? 2642735
邀请新用户注册赠送积分活动 1590426
关于科研通互助平台的介绍 1544793