Learning Spatial-Temporal Dynamics for Short-Term Passenger Flow Prediction in Urban Rail Transit

计算机科学 城市轨道交通 图形 期限(时间) 数据挖掘 工程类 运输工程 理论计算机科学 物理 量子力学
作者
Xianwang Li,Jinxin Wu,Deqiang He,Xiaoliang Teng,Chonghui Ren
出处
期刊:Transportation Research Record [SAGE]
卷期号:2677 (5): 1330-1348 被引量:1
标识
DOI:10.1177/03611981221143109
摘要

Accurate short-term passenger flow prediction in urban rail transit (URT) plays an important role in ensuring the stable operation of the URT systems. Because of the complex dynamic spatial-temporal dependencies and potential semantic correlations of the URT network, accurate and effective short-term passenger flow prediction is challenging. To solve these problems, a novel model called the dynamic spatial-temporal graph convolutional network (DSTGCN) was proposed. Firstly, spatial semantic graphs (SSGs) were established to encode the spatial dependencies and semantic correlations of the URT network. Meanwhile, the dynamic graph convolutional network (DGCN) with the spatial attention mechanism was used to learn the dynamic spatial correlations of the nodes in the SSGs. Then, the long short-term memory (LSTM) network was integrated into the DGCN to learn the dynamic changes of passenger flow and capture local temporal dependencies. Moreover, the temporal attention mechanism was introduced after LSTM to capture global dynamic temporal correlations by adjusting the weights of different sequence information. Finally, the full connection layers were used to output the prediction results. Several experiments were conducted on Nanning Metro Line 1 real datasets to evaluate the model. The experimental results showed that the DSTGCN can effectively capture the dynamic spatial-temporal dependencies and semantic associations of the passenger flow. Besides, the prediction performances of the DSTGCN were better than those of existing baseline models, and it can provide technical support for improving the intelligent planning and operation decisions of URT systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
忘羡222发布了新的文献求助20
2秒前
2秒前
温暖涫完成签到,获得积分10
4秒前
11111发布了新的文献求助10
4秒前
健忘的牛排完成签到,获得积分10
5秒前
wmmm完成签到,获得积分10
5秒前
Akim应助爱吃泡芙采纳,获得10
5秒前
老迟到的书雁完成签到 ,获得积分10
5秒前
5秒前
正经俠发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
学科共进完成签到,获得积分10
8秒前
百草27完成签到,获得积分10
8秒前
9秒前
10秒前
11秒前
绵马紫萁发布了新的文献求助10
11秒前
12秒前
fzhou完成签到 ,获得积分10
12秒前
尘雾发布了新的文献求助10
12秒前
13秒前
一一发布了新的文献求助20
13秒前
13秒前
Aixia完成签到 ,获得积分10
14秒前
葡萄糖完成签到,获得积分10
14秒前
哈哈完成签到,获得积分10
14秒前
在水一方应助CC采纳,获得10
14秒前
14秒前
余笙完成签到 ,获得积分10
15秒前
神勇的雅香应助科研混子采纳,获得10
15秒前
TT发布了新的文献求助10
16秒前
李顺完成签到,获得积分20
17秒前
ayin发布了新的文献求助10
17秒前
wait发布了新的文献求助10
17秒前
我是站长才怪应助xg采纳,获得10
18秒前
童话艺术佳完成签到,获得积分10
18秒前
稀罕你完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824