Learning Spatial-Temporal Dynamics for Short-Term Passenger Flow Prediction in Urban Rail Transit

计算机科学 城市轨道交通 图形 期限(时间) 数据挖掘 工程类 运输工程 理论计算机科学 物理 量子力学
作者
Xianwang Li,Jinxin Wu,Deqiang He,Xiaoliang Teng,Chonghui Ren
出处
期刊:Transportation Research Record [SAGE Publishing]
卷期号:2677 (5): 1330-1348 被引量:1
标识
DOI:10.1177/03611981221143109
摘要

Accurate short-term passenger flow prediction in urban rail transit (URT) plays an important role in ensuring the stable operation of the URT systems. Because of the complex dynamic spatial-temporal dependencies and potential semantic correlations of the URT network, accurate and effective short-term passenger flow prediction is challenging. To solve these problems, a novel model called the dynamic spatial-temporal graph convolutional network (DSTGCN) was proposed. Firstly, spatial semantic graphs (SSGs) were established to encode the spatial dependencies and semantic correlations of the URT network. Meanwhile, the dynamic graph convolutional network (DGCN) with the spatial attention mechanism was used to learn the dynamic spatial correlations of the nodes in the SSGs. Then, the long short-term memory (LSTM) network was integrated into the DGCN to learn the dynamic changes of passenger flow and capture local temporal dependencies. Moreover, the temporal attention mechanism was introduced after LSTM to capture global dynamic temporal correlations by adjusting the weights of different sequence information. Finally, the full connection layers were used to output the prediction results. Several experiments were conducted on Nanning Metro Line 1 real datasets to evaluate the model. The experimental results showed that the DSTGCN can effectively capture the dynamic spatial-temporal dependencies and semantic associations of the passenger flow. Besides, the prediction performances of the DSTGCN were better than those of existing baseline models, and it can provide technical support for improving the intelligent planning and operation decisions of URT systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xx完成签到 ,获得积分10
2秒前
3秒前
科研通AI5应助wanjh0538采纳,获得10
3秒前
雨辰发布了新的文献求助10
3秒前
4秒前
6秒前
dodo应助hw采纳,获得200
7秒前
7秒前
8秒前
dd发布了新的文献求助10
9秒前
卫踏歌完成签到,获得积分10
10秒前
李健应助激动的一手采纳,获得10
10秒前
朱博发布了新的文献求助10
10秒前
春夏爱科研完成签到,获得积分10
10秒前
10秒前
11秒前
sh1ro完成签到,获得积分10
12秒前
Babe1934发布了新的文献求助10
12秒前
13秒前
BoBo完成签到 ,获得积分10
13秒前
anxin完成签到 ,获得积分10
13秒前
14秒前
14秒前
善学以致用应助Eric采纳,获得10
14秒前
15秒前
15秒前
16秒前
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
蝉鸣完成签到 ,获得积分20
19秒前
旺帮主发布了新的文献求助10
19秒前
李存发布了新的文献求助10
19秒前
20秒前
sonya1122发布了新的文献求助10
21秒前
21秒前
老迟到的惜寒完成签到,获得积分20
21秒前
雪白的听寒完成签到 ,获得积分10
22秒前
小新发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600811
求助须知:如何正确求助?哪些是违规求助? 4010804
关于积分的说明 12417574
捐赠科研通 3690690
什么是DOI,文献DOI怎么找? 2034531
邀请新用户注册赠送积分活动 1067930
科研通“疑难数据库(出版商)”最低求助积分说明 952602