Learning Spatial-Temporal Dynamics for Short-Term Passenger Flow Prediction in Urban Rail Transit

计算机科学 城市轨道交通 图形 期限(时间) 数据挖掘 工程类 运输工程 理论计算机科学 物理 量子力学
作者
Xianwang Li,Jinxin Wu,Deqiang He,Xiaoliang Teng,Chonghui Ren
出处
期刊:Transportation Research Record [SAGE]
卷期号:2677 (5): 1330-1348 被引量:1
标识
DOI:10.1177/03611981221143109
摘要

Accurate short-term passenger flow prediction in urban rail transit (URT) plays an important role in ensuring the stable operation of the URT systems. Because of the complex dynamic spatial-temporal dependencies and potential semantic correlations of the URT network, accurate and effective short-term passenger flow prediction is challenging. To solve these problems, a novel model called the dynamic spatial-temporal graph convolutional network (DSTGCN) was proposed. Firstly, spatial semantic graphs (SSGs) were established to encode the spatial dependencies and semantic correlations of the URT network. Meanwhile, the dynamic graph convolutional network (DGCN) with the spatial attention mechanism was used to learn the dynamic spatial correlations of the nodes in the SSGs. Then, the long short-term memory (LSTM) network was integrated into the DGCN to learn the dynamic changes of passenger flow and capture local temporal dependencies. Moreover, the temporal attention mechanism was introduced after LSTM to capture global dynamic temporal correlations by adjusting the weights of different sequence information. Finally, the full connection layers were used to output the prediction results. Several experiments were conducted on Nanning Metro Line 1 real datasets to evaluate the model. The experimental results showed that the DSTGCN can effectively capture the dynamic spatial-temporal dependencies and semantic associations of the passenger flow. Besides, the prediction performances of the DSTGCN were better than those of existing baseline models, and it can provide technical support for improving the intelligent planning and operation decisions of URT systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缥缈襄发布了新的文献求助10
刚刚
2秒前
Lawren完成签到,获得积分10
2秒前
2秒前
。.。发布了新的文献求助10
2秒前
3秒前
浮游应助兴奋的如容采纳,获得10
3秒前
华仔应助炎zbbn采纳,获得10
3秒前
5秒前
5秒前
5秒前
6秒前
在水一方应助源来是洲董采纳,获得10
6秒前
6秒前
qwp发布了新的文献求助10
7秒前
7秒前
jiaayyin发布了新的文献求助20
7秒前
晋姝完成签到,获得积分10
7秒前
旺仔女士完成签到,获得积分10
8秒前
微笑幻波发布了新的文献求助10
9秒前
9秒前
魏儒蕾发布了新的文献求助10
9秒前
9秒前
天天发布了新的文献求助10
11秒前
张馨悦发布了新的文献求助10
11秒前
DONG发布了新的文献求助10
11秒前
终梦应助ji采纳,获得10
12秒前
陈陈陈发布了新的文献求助10
13秒前
刘MTY发布了新的文献求助10
13秒前
李健的小迷弟应助风-FBDD采纳,获得10
13秒前
13秒前
上官若男应助Ykaor采纳,获得10
13秒前
lisier发布了新的文献求助10
13秒前
缥缈襄完成签到,获得积分10
14秒前
14秒前
14秒前
dwxmax发布了新的文献求助10
14秒前
xinxin发布了新的文献求助10
14秒前
略略略完成签到 ,获得积分10
15秒前
歇息下完成签到,获得积分20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521079
求助须知:如何正确求助?哪些是违规求助? 4612571
关于积分的说明 14534355
捐赠科研通 4550094
什么是DOI,文献DOI怎么找? 2493467
邀请新用户注册赠送积分活动 1474588
关于科研通互助平台的介绍 1446154