计算机科学
城市轨道交通
图形
期限(时间)
数据挖掘
工程类
运输工程
理论计算机科学
物理
量子力学
作者
Xianwang Li,Jinxin Wu,Deqiang He,Xiaoliang Teng,Chonghui Ren
标识
DOI:10.1177/03611981221143109
摘要
Accurate short-term passenger flow prediction in urban rail transit (URT) plays an important role in ensuring the stable operation of the URT systems. Because of the complex dynamic spatial-temporal dependencies and potential semantic correlations of the URT network, accurate and effective short-term passenger flow prediction is challenging. To solve these problems, a novel model called the dynamic spatial-temporal graph convolutional network (DSTGCN) was proposed. Firstly, spatial semantic graphs (SSGs) were established to encode the spatial dependencies and semantic correlations of the URT network. Meanwhile, the dynamic graph convolutional network (DGCN) with the spatial attention mechanism was used to learn the dynamic spatial correlations of the nodes in the SSGs. Then, the long short-term memory (LSTM) network was integrated into the DGCN to learn the dynamic changes of passenger flow and capture local temporal dependencies. Moreover, the temporal attention mechanism was introduced after LSTM to capture global dynamic temporal correlations by adjusting the weights of different sequence information. Finally, the full connection layers were used to output the prediction results. Several experiments were conducted on Nanning Metro Line 1 real datasets to evaluate the model. The experimental results showed that the DSTGCN can effectively capture the dynamic spatial-temporal dependencies and semantic associations of the passenger flow. Besides, the prediction performances of the DSTGCN were better than those of existing baseline models, and it can provide technical support for improving the intelligent planning and operation decisions of URT systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI