Electroencephalogram Emotion Recognition Using Combined Features in Variational Mode Decomposition Domain

计算机科学 模式识别(心理学) 人工智能 特征提取 脑电图 线性判别分析 二元分类 语音识别 主成分分析 支持向量机 心理学 精神科
作者
Zhentao Liu,Si-Jun Hu,Jinhua She,Zhaohui Yang,Xin Xu
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:15 (3): 1595-1604 被引量:13
标识
DOI:10.1109/tcds.2022.3233858
摘要

Using electroencephalogram (EEG) to recognize human emotion has attracted increasing attention. However, feature extraction from EEG is a challenging work because it is a nonstationary continuous sequential signal. To obtain more pattern information, a combined feature extraction method in the variational mode decomposition (VMD) domain is proposed, which can extract local features of EEG signals to overcome the effects caused by nonstationarity. This method first decomposes EEG into several components using VMD and then combined features of differential entropy (DE) and short-time energy (STE) are extracted from each component. To optimize combined features, the important features are selected by tree modes, and the feature set is dimensionally reduced by further using linear discriminant analysis (LDA). Moreover, an XGBoost classifier with Bayesian optimization is presented to classify different emotional states. Binary-class and multiclass EEG emotion recognition are conducted on the DEAP data set, from which the experimental results show that accuracy of binary-class classification is 81.77% for high/low valence and 80.47% for high/low arousal, and accuracy of 91.41%, 94.27%, 94.27%, and 93.49% are obtained for HVHA, LVHA, LVLA, and HVLA, respectively, which demonstrate its effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蔺忘幽完成签到,获得积分10
刚刚
刚刚
风云发布了新的文献求助10
1秒前
1秒前
SciGPT应助酷炫的乐荷采纳,获得10
1秒前
Tingshuo发布了新的文献求助10
2秒前
hou发布了新的文献求助10
2秒前
2秒前
蓝莓味蛋挞完成签到,获得积分10
3秒前
柒柒球发布了新的文献求助10
3秒前
4秒前
子车茗应助来昕采纳,获得10
4秒前
打打应助zfl采纳,获得10
5秒前
Hello应助Wu采纳,获得10
5秒前
6秒前
杳鸢应助害羞的败采纳,获得100
6秒前
杳鸢应助奶茶采纳,获得10
6秒前
周凡淇发布了新的文献求助10
7秒前
陈ZHEN发布了新的文献求助30
7秒前
9秒前
Joy发布了新的文献求助10
11秒前
风趣尔琴完成签到,获得积分10
11秒前
xfeng应助斯文败类虎采纳,获得10
11秒前
effortless完成签到,获得积分10
11秒前
Dr郑迅完成签到 ,获得积分10
11秒前
蓝心语发布了新的文献求助10
13秒前
13秒前
13秒前
南哪菜狗应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
cocolu应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
13秒前
14秒前
新酱应助科研通管家采纳,获得10
14秒前
黙宇循光完成签到,获得积分10
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3223022
求助须知:如何正确求助?哪些是违规求助? 2871793
关于积分的说明 8177057
捐赠科研通 2538658
什么是DOI,文献DOI怎么找? 1370749
科研通“疑难数据库(出版商)”最低求助积分说明 645870
邀请新用户注册赠送积分活动 619832