Electroencephalogram Emotion Recognition Using Combined Features in Variational Mode Decomposition Domain

计算机科学 模式识别(心理学) 人工智能 特征提取 脑电图 线性判别分析 二元分类 语音识别 主成分分析 支持向量机 心理学 精神科
作者
Zhentao Liu,Si-Jun Hu,Jinhua She,Zhaohui Yang,Xin Xu
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:15 (3): 1595-1604 被引量:13
标识
DOI:10.1109/tcds.2022.3233858
摘要

Using electroencephalogram (EEG) to recognize human emotion has attracted increasing attention. However, feature extraction from EEG is a challenging work because it is a nonstationary continuous sequential signal. To obtain more pattern information, a combined feature extraction method in the variational mode decomposition (VMD) domain is proposed, which can extract local features of EEG signals to overcome the effects caused by nonstationarity. This method first decomposes EEG into several components using VMD and then combined features of differential entropy (DE) and short-time energy (STE) are extracted from each component. To optimize combined features, the important features are selected by tree modes, and the feature set is dimensionally reduced by further using linear discriminant analysis (LDA). Moreover, an XGBoost classifier with Bayesian optimization is presented to classify different emotional states. Binary-class and multiclass EEG emotion recognition are conducted on the DEAP data set, from which the experimental results show that accuracy of binary-class classification is 81.77% for high/low valence and 80.47% for high/low arousal, and accuracy of 91.41%, 94.27%, 94.27%, and 93.49% are obtained for HVHA, LVHA, LVLA, and HVLA, respectively, which demonstrate its effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和谐煜祺发布了新的文献求助10
刚刚
刚刚
bkagyin应助xiuT采纳,获得10
1秒前
Orange应助哈哈哈采纳,获得30
3秒前
3秒前
Felix完成签到,获得积分10
3秒前
8R60d8完成签到,获得积分0
3秒前
lili完成签到,获得积分10
4秒前
5秒前
6秒前
阳光发布了新的文献求助10
6秒前
反复发作发布了新的文献求助10
8秒前
8秒前
苗条发箍完成签到 ,获得积分10
8秒前
打打应助Irene采纳,获得10
9秒前
Momomo应助川彐采纳,获得10
9秒前
芒琪发布了新的文献求助10
9秒前
上官若男应助听风者采纳,获得10
10秒前
黑黑黑完成签到,获得积分10
10秒前
sypbrooks完成签到,获得积分10
10秒前
刻苦的菀完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
沧海一粟完成签到,获得积分10
13秒前
M3L2完成签到,获得积分10
14秒前
酷波er应助小米采纳,获得10
14秒前
15秒前
田様应助Zero采纳,获得10
17秒前
我是老大应助yeandpeng采纳,获得10
18秒前
姜玲完成签到,获得积分10
18秒前
叶雪怡完成签到 ,获得积分10
19秒前
20秒前
11完成签到,获得积分10
21秒前
小珂完成签到,获得积分10
21秒前
23秒前
23秒前
23秒前
粱夏烟完成签到,获得积分10
24秒前
ScholarZmm完成签到,获得积分10
25秒前
星辰大海应助阳光采纳,获得10
25秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5484152
求助须知:如何正确求助?哪些是违规求助? 4584446
关于积分的说明 14397956
捐赠科研通 4514459
什么是DOI,文献DOI怎么找? 2474010
邀请新用户注册赠送积分活动 1459963
关于科研通互助平台的介绍 1433365