Health prognostics for lithium-ion batteries: mechanisms, methods, and prospects

预言 锂(药物) 离子 可靠性工程 计算机科学 材料科学 环境科学 工程类 化学 医学 精神科 有机化学
作者
Yunhong Che,Xiaosong Hu,Xianke Lin,Jia Guo,Remus Teodorescu
出处
期刊:Energy and Environmental Science [The Royal Society of Chemistry]
卷期号:16 (2): 338-371 被引量:224
标识
DOI:10.1039/d2ee03019e
摘要

Lithium-ion battery aging mechanism analysis and health prognostics are of great significance for a smart battery management system to ensure safe and optimal use of the battery system. This paper provides a comprehensive review of aging mechanisms and the state-of-the-art health prognostic methods and summarizes the main challenges and research prospects for battery health prognostics. First, the complex relationships among aging mechanisms, aging modes, influencing factors, and aging types are reviewed and summarized. Then, the battery health prognostic methods are divided according to different time scales and objectives, which include the short-term state of health estimation, long-term end-of-life prediction, and degradation trajectory prediction, followed by a detailed review of each prognostic task and method. For consistency, we first provide a clear and concise description of each method, showing the similarities and peculiarities of these methods, and then review several representative works. After that, comparative evaluations are conducted. The main advantages and disadvantages of each prognostic task and prognostic method are analyzed in detail. Next, key challenges are presented by considering the specific characteristics of each prognostic task. Moreover, for each challenge, potential solutions are presented and discussed. These proposed potential solutions to the main challenges are beneficial and can be considered by researchers in their further studies. Finally, the future trends of battery health prognostics are discussed, and several new ideas for battery health prognostics are proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
lio完成签到,获得积分10
1秒前
隐形曼青应助Dr采纳,获得10
1秒前
2秒前
小殷发布了新的文献求助10
2秒前
3秒前
3秒前
yyyyyuuuuu完成签到 ,获得积分20
5秒前
Singularity应助Li采纳,获得10
5秒前
王康完成签到,获得积分10
5秒前
6秒前
MWW完成签到,获得积分10
6秒前
Dr完成签到,获得积分10
6秒前
lili发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
打打应助上官小怡采纳,获得10
8秒前
yang完成签到,获得积分10
8秒前
论文写到头秃完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
说好的丶丶完成签到,获得积分10
10秒前
10秒前
爱笑子默完成签到,获得积分10
11秒前
机灵又夏发布了新的文献求助10
11秒前
研友_wZr5Rn发布了新的文献求助10
12秒前
谦让的语雪完成签到,获得积分10
12秒前
13秒前
13秒前
kirito发布了新的文献求助10
14秒前
14秒前
小辉完成签到 ,获得积分10
15秒前
15秒前
加贝火火发布了新的文献求助10
16秒前
AARON发布了新的文献求助10
16秒前
MWW发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Superabsorbent Polymers 2025 800
Rwandan diaspora online: Social connections and identity narratives 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5805317
求助须知:如何正确求助?哪些是违规求助? 5848844
关于积分的说明 15515865
捐赠科研通 4930619
什么是DOI,文献DOI怎么找? 2654670
邀请新用户注册赠送积分活动 1601485
关于科研通互助平台的介绍 1556489