STMI: Stiffness Estimation Method Based on sEMG-Driven Model for Elbow Joint

关节刚度 均方误差 粒子群优化 刚度 人工智能 扭矩 特征(语言学) 接头(建筑物) 均方根 外骨骼 支持向量机 模式识别(心理学) 计算机科学 工程类 控制理论(社会学) 数学 模拟 机器学习 统计 结构工程 物理 语言学 哲学 电气工程 控制(管理) 热力学
作者
Cheng Shen,Zhongcai Pei,Weihai Chen,Zhongyi Li,Jianhua Wang,Jianbin Zhang,Jianer Chen
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-14 被引量:12
标识
DOI:10.1109/tim.2023.3300424
摘要

Human arm exhibits superb maneuverability in performing various tasks by utilizing its ability to actively adjust impedance parameters and interaction forces. Therefore, how to identify the joint stiffness of the arm during motion and transmit them to the exoskeleton robots is the key to achieving flexible rehabilitation motion. In this paper, we propose a stiffness estimation method for elbow joint, termed stiffness and torque mapping index (STMI), which establishes the relationship between joint torque, joint angle and joint stiffness based on surface electromyography (sEMG). To improve joint angle identification accuracy, we propose a regression algorithm (RA), termed improved ant colony optimization generalized regression neural network (IACO-GRNN), and propose a time-domain descriptor (TDD) sEMG feature. Feature comparison experiment show that the TDD features (RMSE: 7.9792±0.0721; R2: 0.9257±0.0020) are superior among the popular features such as mean absolute value (MAV), root mean square (RMS) and waveform length (WL). The combination of TDD and IACO-GRNN achieves more impressive regression performance (RMSE: 8.6839 ± 0.0084, R2: 0.9109 ± 0.0002) than RA in joint angle recognition experiments, such as support vector regression (SVR), random forest regression (RFR), Particle swarm optimization-GRNN (PSO-GRNN) and Genetic algorithm-GRNN (GA-GRNN). The average RMSE of the joint stiffness estimated using STMI was 1.0146 Nm/rad. The proposed method can offer satisfactory dynamic elbow joint stiffness estimation only using sEMG signals, avoiding complex calibration of physiological data and additional sensing devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
cmwlzhy应助科研通管家采纳,获得10
1秒前
1秒前
小桃子应助科研通管家采纳,获得20
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
Jy发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
木木完成签到 ,获得积分10
3秒前
田様应助kdh510采纳,获得10
4秒前
huxi完成签到,获得积分10
4秒前
5秒前
cjh关闭了cjh文献求助
6秒前
量子星尘发布了新的文献求助10
6秒前
ywhys发布了新的文献求助10
6秒前
千千完成签到,获得积分10
6秒前
7秒前
Akim应助zzz采纳,获得10
7秒前
7秒前
7秒前
Hello应助Jy采纳,获得10
8秒前
我没钱完成签到 ,获得积分10
9秒前
忧心的襄发布了新的文献求助10
9秒前
12秒前
爆米花应助nlyk采纳,获得10
13秒前
14秒前
14秒前
iNk应助寒武纪采纳,获得20
14秒前
14秒前
15秒前
所所应助Xiaoy采纳,获得30
15秒前
懵懂的友易完成签到,获得积分20
16秒前
努力的科研小白完成签到 ,获得积分10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5405424
求助须知:如何正确求助?哪些是违规求助? 4523745
关于积分的说明 14095053
捐赠科研通 4437438
什么是DOI,文献DOI怎么找? 2435688
邀请新用户注册赠送积分活动 1427810
关于科研通互助平台的介绍 1406086